Documentation

Foundation.IntProp.Kripke.Basic

Instances For
    @[reducible, inline]
    Equations
    • (x y) = F.Rel x y
    Instances For
      theorem LO.IntProp.Kripke.Frame.rel_trans {F : LO.IntProp.Kripke.Frame} {x y z : F.World} :
      x yy zx z
      @[simp]
      @[simp]
      theorem LO.IntProp.Kripke.Frame.rel_antisymm {F : LO.IntProp.Kripke.Frame} {x y : F.World} :
      x yy xx = y
      • Val : F.WorldProp
      • hereditary : ∀ {w₁ w₂ : F.World}, w₁ w₂∀ {a : }, self.Val w₁ aself.Val w₂ a
      Instances For
        Equations
        • LO.IntProp.Kripke.instCoeFunValuationForallWorldForallNatProp = { coe := LO.IntProp.Kripke.Valuation.Val }
        Instances For
          @[simp]
          @[simp]
          @[simp]
          theorem LO.IntProp.Formula.Kripke.Satisfies.imp_def {M : LO.IntProp.Kripke.Model} {w : M.World} {φ ψ : LO.IntProp.Formula } :
          w φ ψ ∀ {w' : M.World}, w w'w' φw' ψ
          @[simp]
          theorem LO.IntProp.Formula.Kripke.Satisfies.neg_def {M : LO.IntProp.Kripke.Model} {w : M.World} {φ : LO.IntProp.Formula } :
          w φ ∀ {w' : M.World}, w w'¬w' φ

          A set of formula that valid on frame F.

          Equations
          Instances For
            instance LO.IntProp.Hilbert.Kripke.instSound {H : LO.IntProp.Hilbert } {C : LO.IntProp.Kripke.FrameClass} {T : Set (LO.IntProp.Formula )} (definedBy : C.DefinedBy T) (heq : { axioms := 𝗘𝗙𝗤 T } =ₛ H) :
            Equations
            • =