Documentation

Foundation.IntProp.Kripke.Basic

@[reducible, inline]
abbrev LO.IntProp.Kripke.Frame.Rel' {F : Frame} (x y : F.World) :
Equations
  • (x y) = F.Rel x y
theorem LO.IntProp.Kripke.Frame.rel_trans {F : Frame} {x y z : F.World} :
x yy zx z
@[simp]
theorem LO.IntProp.Kripke.Frame.rel_refl {F : Frame} {x : F.World} :
x x
@[simp]
theorem LO.IntProp.Kripke.Frame.rel_antisymm {F : Frame} {x y : F.World} :
x yy xx = y
  • Val : F.WorldProp
  • hereditary {w₁ w₂ : F.World} : w₁ w₂∀ {a : }, self.Val w₁ aself.Val w₂ a
Instances For
@[simp]
@[simp]
theorem LO.IntProp.Formula.Kripke.Satisfies.atom_def {M : Kripke.Model} {w : M.World} {a : } :
w atom a M.Val.Val w a
@[simp]
theorem LO.IntProp.Formula.Kripke.Satisfies.and_def {M : Kripke.Model} {w : M.World} {φ ψ : Formula } :
w φ ψ w φ w ψ
@[simp]
theorem LO.IntProp.Formula.Kripke.Satisfies.or_def {M : Kripke.Model} {w : M.World} {φ ψ : Formula } :
w φ ψ w φ w ψ
@[simp]
theorem LO.IntProp.Formula.Kripke.Satisfies.imp_def {M : Kripke.Model} {w : M.World} {φ ψ : Formula } :
w φ ψ ∀ {w' : M.World}, w w'w' φw' ψ
@[simp]
theorem LO.IntProp.Formula.Kripke.Satisfies.neg_def {M : Kripke.Model} {w : M.World} {φ : Formula } :
w φ ∀ {w' : M.World}, w w'¬w' φ
theorem LO.IntProp.Formula.Kripke.Satisfies.formula_hereditary {M : Kripke.Model} {w w' : M.World} {φ : Formula } (hw : w w') :
w φw' φ
theorem LO.IntProp.Formula.Kripke.ValidOnModel.orElim {M : Kripke.Model} {φ ψ χ : Formula } :
M (φ χ) (ψ χ) φ ψ χ
theorem LO.IntProp.Formula.Kripke.ValidOnModel.imply₂ {M : Kripke.Model} {φ ψ χ : Formula } :
M (φ ψ χ) (φ ψ) φ χ
theorem LO.IntProp.Formula.Kripke.ValidOnModel.mdp {M : Kripke.Model} {φ ψ : Formula } (hpq : M φ ψ) (hp : M φ) :
M ψ
theorem LO.IntProp.Formula.Kripke.ValidOnFrame.orElim {F : Kripke.Frame} {φ ψ χ : Formula } :
F (φ χ) (ψ χ) φ ψ χ
theorem LO.IntProp.Formula.Kripke.ValidOnFrame.imply₂ {F : Kripke.Frame} {φ ψ χ : Formula } :
F (φ ψ χ) (φ ψ) φ χ
theorem LO.IntProp.Formula.Kripke.ValidOnFrame.mdp {F : Kripke.Frame} {φ ψ : Formula } (hpq : F φ ψ) (hp : F φ) :
F ψ

A set of formula that valid on frame F.

Equations
Equations
theorem LO.IntProp.Hilbert.Kripke.sound_hilbert_of_frameclass {φ : Formula } {C : Kripke.FrameClass} {T : Set (Formula )} (definedBy : C.DefinedBy T) :
{ axioms := 𝗘𝗙𝗤 T } ⊢! φC φ
theorem LO.IntProp.Hilbert.Kripke.sound_of_equiv_frameclass_hilbert {H : Hilbert } {φ : Formula } {C : Kripke.FrameClass} {T : Set (Formula )} (definedBy : C.DefinedBy T) (heq : { axioms := 𝗘𝗙𝗤 T } =ₛ H) :
H ⊢! φC φ
instance LO.IntProp.Hilbert.Kripke.instSound {H : Hilbert } {C : Kripke.FrameClass} {T : Set (Formula )} (definedBy : C.DefinedBy T) (heq : { axioms := 𝗘𝗙𝗤 T } =ₛ H) :
Sound H C
theorem LO.IntProp.Hilbert.Kripke.consistent {H : Hilbert } {C : Kripke.FrameClass} [Sound H C] (h_nonempty : Set.Nonempty C) :
H.Consistent