Documentation

Foundation.Vorspiel.BinaryRelations

def Euclidean {α : Type u} (rel : ααProp) :
Equations
  • Euclidean rel = ∀ ⦃x y z : α⦄, rel x yrel x zrel z y
def Serial {α : Type u} (rel : ααProp) :
Equations
  • Serial rel = ∀ (x : α), ∃ (y : α), rel x y
def Confluent {α : Type u} (rel : ααProp) :
Equations
  • Confluent rel = ∀ ⦃x y z : α⦄, rel x y rel x z∃ (w : α), rel y w rel z w
def Dense {α : Type u} (rel : ααProp) :
Equations
  • Dense rel = ∀ ⦃x y : α⦄, rel x y∃ (z : α), rel x z rel z y
def Connected {α : Type u} (rel : ααProp) :
Equations
  • Connected rel = ∀ ⦃x y z : α⦄, rel x y rel x zrel y z rel z y
def Functional {α : Type u} (rel : ααProp) :
Equations
def RightConvergent {α : Type u} (rel : ααProp) :
Equations
def Coreflexive {α : Type u} (rel : ααProp) :
Equations
def Equality {α : Type u} (rel : ααProp) :
Equations
def Isolated {α : Type u} (rel : ααProp) :
Equations
def Assymetric {α : Type u} (rel : ααProp) :
Equations
def Universal {α : Type u} (rel : ααProp) :
Equations
@[reducible, inline]
abbrev ConverseWellFounded {α : Type u} (rel : ααProp) :
Equations
theorem serial_of_refl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) :
Serial rel
theorem eucl_of_symm_trans {α : Type u} {rel : ααProp} (hSymm : Symmetric rel) (hTrans : Transitive rel) :
theorem trans_of_symm_eucl {α : Type u} {rel : ααProp} (hSymm : Symmetric rel) (hEucl : Euclidean rel) :
theorem symm_of_refl_eucl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) (hEucl : Euclidean rel) :
theorem trans_of_refl_eucl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) (hEucl : Euclidean rel) :
theorem refl_of_symm_serial_eucl {α : Type u} {rel : ααProp} (hSymm : Symmetric rel) (hSerial : Serial rel) (hEucl : Euclidean rel) :
theorem corefl_of_refl_assym_eucl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) (hAntisymm : AntiSymmetric rel) (hEucl : Euclidean rel) :
theorem equality_of_refl_corefl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) (hCorefl : Coreflexive rel) :
theorem equality_of_refl_assym_eucl {α : Type u} {rel : ααProp} (hRefl : Reflexive rel) (hAntisymm : AntiSymmetric rel) (hEucl : Euclidean rel) :
theorem refl_of_equality {α : Type u} {rel : ααProp} (h : Equality rel) :
theorem corefl_of_equality {α : Type u} {rel : ααProp} (h : Equality rel) :
theorem irreflexive_of_assymetric {α : Type u} {rel : ααProp} (hAssym : Assymetric rel) :
theorem refl_of_universal {α : Type u} {rel : ααProp} (h : Universal rel) :
theorem eucl_of_universal {α : Type u} {rel : ααProp} (h : Universal rel) :
theorem ConverseWellFounded.iff_has_max {α : Type u} {r : ααProp} :
ConverseWellFounded r ∀ (s : Set α), s.Nonemptyms, xs, ¬r m x
theorem Finite.converseWellFounded_of_trans_irrefl {α : Type u} {rel : ααProp} [Finite α] [IsTrans α rel] [IsIrrefl α rel] :
theorem Finite.converseWellFounded_of_trans_irrefl' {α : Type u} {rel : ααProp} (hFinite : Finite α) (hTrans : Transitive rel) (hIrrefl : Irreflexive rel) :
@[simp]
theorem WellFounded.trivial_wellfounded {α : Type u} :
WellFounded fun (x x : α) => False
def Relation.IrreflGen {α : Type u} (R : ααProp) (x y : α) :
Equations
@[reducible, inline]
abbrev WeaklyConverseWellFounded {α : Type u} (R : ααProp) :
Equations
def WCWF {α : Type u} (R : ααProp) :

Alias of WeaklyConverseWellFounded.

Equations
theorem dependent_choice {α : Type u} {R : ααProp} (h : ∃ (s : Set α), s.Nonempty as, bs, R a b) :
∃ (f : α), ∀ (x : ), R (f x) (f (x + 1))
theorem Finite.exists_ne_map_eq_of_infinite_lt {α : Type u_1} {β : Sort u_2} [LinearOrder α] [Infinite α] [Finite β] (f : αβ) :
∃ (x : α) (y : α), x < y f x = f y
theorem antisymm_of_WCWF {α : Type u} {R : ααProp} :
theorem WCWF_of_finite_trans_antisymm {α : Type u} {R : ααProp} (hFin : Finite α) (R_trans : Transitive R) :