Documentation

Foundation.Modal.Kripke.Geach.Basic

theorem LO.Modal.Kripke.ReflexiveFrameClass.is_geach :
ReflexiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
@[reducible, inline]

Frame class of Hilbert.KD

Equations
Instances For
theorem LO.Modal.Kripke.SerialFrameClass.is_geach :
SerialFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
theorem LO.Modal.Kripke.SymmetricFrameClass.is_geach :
SymmetricFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.TransitiveFrameClass.is_geach :
TransitiveFrameClass.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
theorem LO.Modal.Kripke.EuclideanFrameClass.is_geach :
EuclideanFrameClass.IsGeach [{ i := 1, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.ReflexiveEuclideanFrameClass.is_geach :
ReflexiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.ReflexiveSymmetricFrameClass.is_geach :
ReflexiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.ReflexiveTransitiveFrameClass.is_geach :
ReflexiveTransitiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
theorem LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass.is_geach :
ReflexiveTransitiveConfluentFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
theorem LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass.is_geach :
ReflexiveTransitiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass.is_geach :
SerialTransitiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.TransitiveEuclideanFrameClass.is_geach :
TransitiveEuclideanFrameClass.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.SymmetricTransitiveFrameClass.is_geach :
SymmetricTransitiveFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
theorem LO.Modal.Kripke.SymmetricEuclideanFrameClass.is_geach :
SymmetricEuclideanFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.SerialSymmetricFrameClass.is_geach :
SerialSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 1, m := 0, n := 1 }]
theorem LO.Modal.Kripke.SerialTransitiveFrameClass.is_geach :
SerialTransitiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
theorem LO.Modal.Kripke.SerialEuclideanFrameClass.is_geach :
SerialEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]