Documentation

Foundation.Modal.Kripke.Geach.Basic

@[reducible, inline]

Frame class of Hilbert.KT

Equations
Instances For
    @[reducible, inline]

    Frame class of Hilbert.KD

    Equations
    Instances For
      theorem LO.Modal.Kripke.SerialFrameClass.is_geach :
      LO.Modal.Kripke.SerialFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
      @[reducible, inline]

      Frame class of Hilbert.KB

      Equations
      Instances For
        @[reducible, inline]

        Frame class of Hilbert.K4

        Equations
        Instances For
          @[reducible, inline]

          Frame class of Hilbert.K5

          Equations
          Instances For
            theorem LO.Modal.Kripke.ReflexiveEuclideanFrameClass.is_geach :
            LO.Modal.Kripke.ReflexiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
            theorem LO.Modal.Kripke.ReflexiveSymmetricFrameClass.is_geach :
            LO.Modal.Kripke.ReflexiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
            theorem LO.Modal.Kripke.ReflexiveTransitiveFrameClass.is_geach :
            LO.Modal.Kripke.ReflexiveTransitiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
            theorem LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass.is_geach :
            LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
            theorem LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass.is_geach :
            LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
            theorem LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass.is_geach :
            LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
            theorem LO.Modal.Kripke.TransitiveEuclideanFrameClass.is_geach :
            LO.Modal.Kripke.TransitiveEuclideanFrameClass.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
            theorem LO.Modal.Kripke.SymmetricTransitiveFrameClass.is_geach :
            LO.Modal.Kripke.SymmetricTransitiveFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
            theorem LO.Modal.Kripke.SymmetricEuclideanFrameClass.is_geach :
            LO.Modal.Kripke.SymmetricEuclideanFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]
            @[reducible, inline]

            Frame class of Hilbert.KDB

            Equations
            Instances For
              theorem LO.Modal.Kripke.SerialSymmetricFrameClass.is_geach :
              LO.Modal.Kripke.SerialSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 1, m := 0, n := 1 }]
              theorem LO.Modal.Kripke.SerialTransitiveFrameClass.is_geach :
              LO.Modal.Kripke.SerialTransitiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
              @[reducible, inline]

              Frame class of Hilbert.KD5

              Equations
              Instances For
                theorem LO.Modal.Kripke.SerialEuclideanFrameClass.is_geach :
                LO.Modal.Kripke.SerialEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]