@[reducible, inline]
Equations
- LO.Modal.Kripke.GeachConfluentFrameClass t = {F : LO.Modal.Kripke.Frame | GeachConfluent t F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.MultiGeachConfluentFrameClass ts = {F : LO.Modal.Kripke.Frame | MultiGeachConfluent ts F.Rel}
Instances For
theorem
LO.Modal.Kripke.MultiGeachConfluentFrameClass.def_cons
{t : GeachConfluent.Taple}
{ts : List GeachConfluent.Taple}
(ts_nil : ts ≠ [])
:
@[reducible, inline]
abbrev
LO.Modal.Kripke.FrameClass.IsGeach
(C : LO.Modal.Kripke.FrameClass)
(ts : List GeachConfluent.Taple)
:
Equations
- C.IsGeach ts = (C = LO.Modal.Kripke.MultiGeachConfluentFrameClass ts)
Instances For
@[reducible, inline]
Frame class of Hilbert.KT
Equations
- LO.Modal.Kripke.ReflexiveFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
@[reducible, inline]
Frame class of Hilbert.KD
Equations
- LO.Modal.Kripke.SerialFrameClass = {F : LO.Modal.Kripke.Frame | Serial F.Rel}
Instances For
theorem
LO.Modal.Kripke.SerialFrameClass.is_geach :
LO.Modal.Kripke.SerialFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KB
Equations
- LO.Modal.Kripke.SymmetricFrameClass = {F : LO.Modal.Kripke.Frame | Symmetric F.Rel}
Instances For
theorem
LO.Modal.Kripke.SymmetricFrameClass.is_geach :
LO.Modal.Kripke.SymmetricFrameClass.IsGeach [{ i := 0, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.K4
Equations
- LO.Modal.Kripke.TransitiveFrameClass = {F : LO.Modal.Kripke.Frame | Transitive F.Rel}
Instances For
theorem
LO.Modal.Kripke.TransitiveFrameClass.is_geach :
LO.Modal.Kripke.TransitiveFrameClass.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
@[reducible, inline]
Frame class of Hilbert.K5
Equations
- LO.Modal.Kripke.EuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.EuclideanFrameClass.is_geach :
LO.Modal.Kripke.EuclideanFrameClass.IsGeach [{ i := 1, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.S5
Equations
- LO.Modal.Kripke.ReflexiveEuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel ∧ Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveEuclideanFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveEuclideanFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KTB
Equations
- LO.Modal.Kripke.ReflexiveSymmetricFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel ∧ Symmetric F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveSymmetricFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveSymmetricFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.S4
Equations
- LO.Modal.Kripke.ReflexiveTransitiveFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveTransitiveFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveTransitiveFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
@[reducible, inline]
Frame class of Hilbert.S4Dot2
Equations
- LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Confluent F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveTransitiveConfluentFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KT4B
Equations
- LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass = {F : LO.Modal.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Symmetric F.Rel}
Instances For
theorem
LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass.is_geach :
LO.Modal.Kripke.ReflexiveTransitiveSymmetricFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KD45
Equations
- LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Serial F.Rel ∧ Transitive F.Rel ∧ Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass.is_geach :
LO.Modal.Kripke.SerialTransitiveEuclideanFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.K45
Equations
- LO.Modal.Kripke.TransitiveEuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Transitive F.Rel ∧ Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.TransitiveEuclideanFrameClass.is_geach :
LO.Modal.Kripke.TransitiveEuclideanFrameClass.IsGeach
[{ i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KB4
Equations
- LO.Modal.Kripke.SymmetricTransitiveFrameClass = {F : LO.Modal.Kripke.Frame | Symmetric F.Rel ∧ Transitive F.Rel}
Instances For
theorem
LO.Modal.Kripke.SymmetricTransitiveFrameClass.is_geach :
LO.Modal.Kripke.SymmetricTransitiveFrameClass.IsGeach
[{ i := 0, j := 1, m := 0, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
@[reducible, inline]
Frame class of Hilbert.KB5
Equations
- LO.Modal.Kripke.SymmetricEuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Symmetric F.Rel ∧ Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.SymmetricEuclideanFrameClass.is_geach :
LO.Modal.Kripke.SymmetricEuclideanFrameClass.IsGeach
[{ i := 0, j := 1, m := 0, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KDB
Equations
- LO.Modal.Kripke.SerialSymmetricFrameClass = {F : LO.Modal.Kripke.Frame | Serial F.Rel ∧ Symmetric F.Rel}
Instances For
theorem
LO.Modal.Kripke.SerialSymmetricFrameClass.is_geach :
LO.Modal.Kripke.SerialSymmetricFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 1, m := 0, n := 1 }]
@[reducible, inline]
Frame class of Hilbert.KD4
Equations
- LO.Modal.Kripke.SerialTransitiveFrameClass = {F : LO.Modal.Kripke.Frame | Serial F.Rel ∧ Transitive F.Rel}
Instances For
theorem
LO.Modal.Kripke.SerialTransitiveFrameClass.is_geach :
LO.Modal.Kripke.SerialTransitiveFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 1 }, { i := 0, j := 2, m := 1, n := 0 }]
@[reducible, inline]
Frame class of Hilbert.KD5
Equations
- LO.Modal.Kripke.SerialEuclideanFrameClass = {F : LO.Modal.Kripke.Frame | Serial F.Rel ∧ Euclidean F.Rel}
Instances For
theorem
LO.Modal.Kripke.SerialEuclideanFrameClass.is_geach :
LO.Modal.Kripke.SerialEuclideanFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 1 }, { i := 1, j := 1, m := 0, n := 1 }]
theorem
LO.Modal.Kripke.GeachConfluentFrameClass.isDefinedBy
{t : GeachConfluent.Taple}
:
(LO.Modal.Kripke.GeachConfluentFrameClass t).DefinedBy 𝗴𝗲(t)
theorem
LO.Modal.Kripke.MultiGeachConfluentFrameClass.isDefinedBy
{ts : List GeachConfluent.Taple}
:
(LO.Modal.Kripke.MultiGeachConfluentFrameClass ts).DefinedBy 𝗚𝗲(ts)
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_geachConfluent_of_subset_Geach
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
{t : GeachConfluent.Taple}
(h : 𝗴𝗲(t) ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_multiGeachConfluent_of_subset_MultiGeach
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
{ts : List GeachConfluent.Taple}
(h : 𝗚𝗲(ts) ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_reflexive_of_subset_T
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : 𝗧 ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_serial_of_subset_D
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : 𝗗 ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_transitive_of_subset_Four
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : 𝟰 ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_euclidean_of_subset_Five
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : 𝟱 ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_symmetric_of_subset_B
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : 𝗕 ⊆ Ax)
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.is_confluent_of_subset_dot2
{Ax : LO.Modal.Theory ℕ}
[(LO.Modal.Hilbert.ExtK Ax).Consistent]
(h : .𝟮 ⊆ Ax)
: