@[reducible, inline]
◇ is duality of □.
Instances For
@[reducible, inline]
Equations
- LO.Axioms.DiaDuality.set = {x : F | ∃ (φ : F), LO.Axioms.DiaDuality φ = x}
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗞» = Lean.ParserDescr.node `LO.Axioms.«term𝗞» 1024 (Lean.ParserDescr.symbol "𝗞")
 
Instances For
Equations
- LO.Axioms.«term𝗧» = Lean.ParserDescr.node `LO.Axioms.«term𝗧» 1024 (Lean.ParserDescr.symbol "𝗧")
 
Instances For
Equations
- LO.Axioms.«term𝗕» = Lean.ParserDescr.node `LO.Axioms.«term𝗕» 1024 (Lean.ParserDescr.symbol "𝗕")
 
Instances For
@[reducible, inline]
□-only version of axiom 𝗕.
Instances For
Equations
- LO.Axioms.«term𝗕(□)» = Lean.ParserDescr.node `LO.Axioms.«term𝗕(□)» 1024 (Lean.ParserDescr.symbol "𝗕(□)")
 
Instances For
Equations
- LO.Axioms.«term𝗗» = Lean.ParserDescr.node `LO.Axioms.«term𝗗» 1024 (Lean.ParserDescr.symbol "𝗗")
 
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Axioms.«term𝗣» = Lean.ParserDescr.node `LO.Axioms.«term𝗣» 1024 (Lean.ParserDescr.symbol "𝗣")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝟰» = Lean.ParserDescr.node `LO.Axioms.«term𝟰» 1024 (Lean.ParserDescr.symbol "𝟰")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝟱» = Lean.ParserDescr.node `LO.Axioms.«term𝟱» 1024 (Lean.ParserDescr.symbol "𝟱")
 
Instances For
@[reducible, inline]
□-only version of axiom 𝟱.
Instances For
Equations
- LO.Axioms.«term𝟱(□)» = Lean.ParserDescr.node `LO.Axioms.«term𝟱(□)» 1024 (Lean.ParserDescr.symbol "𝟱(□)")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term.𝟮» = Lean.ParserDescr.node `LO.Axioms.«term.𝟮» 1024 (Lean.ParserDescr.symbol ".𝟮")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗖𝟰» = Lean.ParserDescr.node `LO.Axioms.«term𝗖𝟰» 1024 (Lean.ParserDescr.symbol "𝗖𝟰")
 
Instances For
Equations
- LO.Axioms.«term𝗖𝗗» = Lean.ParserDescr.node `LO.Axioms.«term𝗖𝗗» 1024 (Lean.ParserDescr.symbol "𝗖𝗗")
 
Instances For
Equations
- LO.Axioms.«term𝗧𝗰» = Lean.ParserDescr.node `LO.Axioms.«term𝗧𝗰» 1024 (Lean.ParserDescr.symbol "𝗧𝗰")
 
Instances For
Equations
- LO.Axioms.«term𝗩𝗲𝗿» = Lean.ParserDescr.node `LO.Axioms.«term𝗩𝗲𝗿» 1024 (Lean.ParserDescr.symbol "𝗩𝗲𝗿")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term.𝟯» = Lean.ParserDescr.node `LO.Axioms.«term.𝟯» 1024 (Lean.ParserDescr.symbol ".𝟯")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗚𝗿𝘇» = Lean.ParserDescr.node `LO.Axioms.«term𝗚𝗿𝘇» 1024 (Lean.ParserDescr.symbol "𝗚𝗿𝘇")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗠» = Lean.ParserDescr.node `LO.Axioms.«term𝗠» 1024 (Lean.ParserDescr.symbol "𝗠")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗟» = Lean.ParserDescr.node `LO.Axioms.«term𝗟» 1024 (Lean.ParserDescr.symbol "𝗟")
 
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Axioms.«term𝗛» = Lean.ParserDescr.node `LO.Axioms.«term𝗛» 1024 (Lean.ParserDescr.symbol "𝗛")
 
Instances For
@[reducible, inline]
abbrev
LO.Axioms.Geach
{F : Type u_1}
[BasicModalLogicalConnective F]
(t : GeachConfluent.Taple)
(φ : F)
 :
F
Instances For
@[reducible, inline]
abbrev
LO.Axioms.Geach.set
{F : Type u_1}
[BasicModalLogicalConnective F]
(t : GeachConfluent.Taple)
 :
Set F
Equations
- 𝗴𝗲(t) = {x : F | ∃ (φ : F), LO.Axioms.Geach t φ = x}
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
@[simp]
theorem
LO.Axioms.MultiGeach.def_one
{F : Type u_1}
[BasicModalLogicalConnective F]
{t : GeachConfluent.Taple}
 :
theorem
LO.Axioms.MultiGeach.def_two
{F : Type u_1}
[BasicModalLogicalConnective F]
{t₁ t₂ : GeachConfluent.Taple}
 :
@[simp]
theorem
LO.Axioms.MultiGeach.iff_cons
{F : Type u_1}
[BasicModalLogicalConnective F]
{x : GeachConfluent.Taple}
{l : List GeachConfluent.Taple}
 :
theorem
LO.Axioms.MultiGeach.mem
{F : Type u_1}
[BasicModalLogicalConnective F]
{l : List GeachConfluent.Taple}
{x : GeachConfluent.Taple}
(h : x ∈ l)
 :