Documentation

Foundation.Modal.LogicSymbol

class LO.Box (F : Type u_1) :
Type u_1
Instances
    @[reducible, match_pattern, inline]
    abbrev LO.Box.boxdot {F : Type u_1} [Box F] [Wedge F] (φ : F) :
    F
    Equations
    @[reducible, inline]
    abbrev LO.Box.multibox {F : Type u_1} [Box F] (n : ) :
    FF
    Equations
    Equations
    • One or more equations did not get rendered due to their size.
    class LO.Box.Subclosed {F : Type u_1} [Box F] (C : FProp) :
    • box_closed {φ : F} : C (φ)C φ
    Instances
      @[simp]
      theorem LO.Box.box_injective' {F : Type u_1} [Box F] {φ ψ : F} :
      φ = ψ φ = ψ
      @[simp]
      theorem LO.Box.multibox_succ {F : Type u_1} [Box F] {φ : F} {n : } :
      □^[(n + 1)]φ = □^[n]φ
      @[simp]
      theorem LO.Box.multibox_injective {F : Type u_1} [Box F] {n : } :
      Function.Injective fun (x : F) => □^[n]x
      @[simp]
      theorem LO.Box.multimop_injective' {F : Type u_1} [Box F] {φ ψ : F} {n : } :
      □^[n]φ = □^[n]ψ φ = ψ
      class LO.Dia (F : Type u_1) :
      Type u_1
      Instances
        @[reducible, match_pattern, inline]
        abbrev LO.Dia.diadot {F : Type u_1} [Dia F] [Vee F] (φ : F) :
        F
        Equations
        @[reducible, inline]
        abbrev LO.Dia.multidia {F : Type u_1} [Dia F] (n : ) :
        FF
        Equations
        Equations
        • One or more equations did not get rendered due to their size.
        class LO.Dia.Subclosed {F : Type u_1} [Dia F] [LogicalConnective F] (C : FProp) :
        • dia_closed {φ : F} : C (φ)C φ
        Instances
          @[simp]
          theorem LO.Dia.dia_injective' {F : Type u_1} [Dia F] {φ ψ : F} :
          φ = ψ φ = ψ
          @[simp]
          theorem LO.Dia.multidia_succ {F : Type u_1} [Dia F] {φ : F} {n : } :
          ◇^[(n + 1)]φ = ◇^[n]φ
          @[simp]
          theorem LO.Dia.multidia_injective {F : Type u_1} [Dia F] {n : } :
          Function.Injective fun (x : F) => ◇^[n]x
          @[simp]
          theorem LO.Dia.multidia_injective' {F : Type u_1} [Dia F] {φ ψ : F} {n : } :
          ◇^[n]φ = ◇^[n]ψ φ = ψ
          Instances
            class LO.DiaAbbrev (F : Type u_1) [Box F] [Dia F] [Tilde F] :
            Instances
            class LO.ModalDeMorgan (F : Type u_1) [LogicalConnective F] [Box F] [Dia F] extends LO.DeMorgan F :
            Instances
            @[reducible, inline]
            abbrev Set.multibox {F : Type u_1} [LO.Box F] (n : ) :
            Set FSet F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            abbrev Set.multidia {F : Type u_1} [LO.Dia F] (n : ) :
            Set FSet F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            abbrev Set.box {F : Type u_1} [LO.Box F] :
            Set FSet F
            Equations
            @[reducible, inline]
            abbrev Set.dia {F : Type u_1} [LO.Dia F] :
            Set FSet F
            Equations
            @[reducible, inline]
            abbrev Set.premultibox {F : Type u_1} [LO.Box F] (n : ) :
            Set FSet F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            abbrev Set.premultidia {F : Type u_1} [LO.Dia F] (n : ) :
            Set FSet F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            abbrev Set.prebox {F : Type u_1} [LO.Box F] :
            Set FSet F
            Equations
            @[reducible, inline]
            abbrev Set.predia {F : Type u_1} [LO.Dia F] :
            Set FSet F
            Equations
            @[simp]
            theorem Set.eq_box_multibox_one {F : Type u_1} {s : Set F} [LO.Box F] :
            @[simp]
            @[simp]
            theorem Set.multibox_subset_mono {F : Type u_1} {s t : Set F} [LO.Box F] {n : } (h : s t) :
            @[simp]
            theorem Set.box_subset_mono {F : Type u_1} {s t : Set F} [LO.Box F] (h : s t) :
            @[simp]
            theorem Set.premultibox_subset_mono {F : Type u_1} {s t : Set F} [LO.Box F] {n : } (h : s t) :
            @[simp]
            theorem Set.prebox_subset_mono {F : Type u_1} {s t : Set F} [LO.Box F] (h : s t) :
            @[simp]
            theorem Set.iff_mem_premultibox {F : Type u_1} {s : Set F} [LO.Box F] {n : } {φ : F} :
            @[simp]
            theorem Set.iff_mem_multibox {F : Type u_1} {s : Set F} [LO.Box F] {n : } {φ : F} :
            theorem Set.subset_prebox_iff_box_subset {F : Type u_1} {s t : Set F} [LO.Box F] (h : s □''⁻¹t) :
            theorem Set.subset_box_iff_prebox_subset {F : Type u_1} {s t : Set F} [LO.Box F] (h : s □''t) :
            theorem Set.forall_multibox_of_subset_multibox {F : Type u_1} {s t : Set F} [LO.Box F] {n : } (h : s □''^[n]t) (φ : F) :
            φ sψt, φ = □^[n]ψ
            theorem Set.forall_box_of_subset_box {F : Type u_1} {s t : Set F} [LO.Box F] (h : s □''t) (φ : F) :
            φ sψt, φ = ψ
            theorem Set.eq_prebox_box_of_subset_prebox {F : Type u_1} {s t : Set F} [LO.Box F] (h : s □''t) :
            @[simp]
            theorem Set.eq_dia_multidia_one {F : Type u_1} {s : Set F} [LO.Dia F] :
            @[simp]
            @[simp]
            theorem Set.multidia_subset_mono {F : Type u_1} {s t : Set F} [LO.Dia F] {n : } (h : s t) :
            @[simp]
            theorem Set.dia_subset_mono {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s t) :
            @[simp]
            theorem Set.premultidia_subset_mono {F : Type u_1} {s t : Set F} [LO.Dia F] {n : } (h : s t) :
            @[simp]
            theorem Set.predia_subset_mono {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s t) :
            @[simp]
            theorem Set.iff_mem_premultidia {F : Type u_1} {s : Set F} [LO.Dia F] {n : } {φ : F} :
            @[simp]
            theorem Set.iff_mem_multidia {F : Type u_1} {s : Set F} [LO.Dia F] {n : } {φ : F} :
            theorem Set.subset_premultidia_iff_multidia_subset {F : Type u_1} {s t : Set F} [LO.Dia F] {n : } (h : s ◇''⁻¹^[n]t) :
            theorem Set.subset_predia_iff_dia_subset {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s ◇''⁻¹t) :
            theorem Set.subset_multidia_iff_premultidia_subset {F : Type u_1} {s t : Set F} [LO.Dia F] {n : } (h : s ◇''^[n]t) :
            theorem Set.subset_dia_iff_predia_subset {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s ◇''t) :
            theorem Set.forall_multidia_of_subset_multidia {F : Type u_1} {s t : Set F} [LO.Dia F] {n : } (h : s ◇''^[n]t) (φ : F) :
            φ sψt, φ = ◇^[n]ψ
            theorem Set.forall_dia_of_subset_dia {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s ◇''t) (φ : F) :
            φ sψt, φ = ψ
            theorem Set.eq_predia_dia_of_subset_predia {F : Type u_1} {s t : Set F} [LO.Dia F] (h : s ◇''t) :
            @[reducible, inline]
            abbrev Finset.multibox {F : Type u_1} [DecidableEq F] [LO.Box F] (n : ) :
            Finset FFinset F
            Equations
            @[reducible, inline]
            abbrev Finset.multidia {F : Type u_1} [DecidableEq F] [LO.Dia F] (n : ) :
            Finset FFinset F
            Equations
            @[reducible, inline]
            abbrev Finset.box {F : Type u_1} [DecidableEq F] [LO.Box F] :
            Finset FFinset F
            Equations
            @[reducible, inline]
            abbrev Finset.dia {F : Type u_1} [DecidableEq F] [LO.Dia F] :
            Finset FFinset F
            Equations
            @[reducible, inline]
            noncomputable abbrev Finset.premultibox {F : Type u_1} [LO.Box F] (n : ) :
            Finset FFinset F
            Equations
            @[reducible, inline]
            noncomputable abbrev Finset.premultidia {F : Type u_1} [LO.Dia F] (n : ) :
            Finset FFinset F
            Equations
            @[reducible, inline]
            noncomputable abbrev Finset.prebox {F : Type u_1} [LO.Box F] :
            Finset FFinset F
            Equations
            @[reducible, inline]
            noncomputable abbrev Finset.predia {F : Type u_1} [LO.Dia F] :
            Finset FFinset F
            Equations
            @[simp]
            theorem Finset.eq_box_multibox_one {F : Type u_1} {s : Finset F} [LO.Box F] [DecidableEq F] :
            s.box = Finset.multibox 1 s
            @[simp]
            theorem Finset.eq_prebox_premultibox_one {F : Type u_1} {s : Finset F} [LO.Box F] :
            s.prebox = Finset.premultibox 1 s
            theorem Finset.multibox_coe {F : Type u_1} {s : Finset F} {n : } [LO.Box F] [DecidableEq F] :
            (Finset.multibox n s) = □''^[n]s
            theorem Finset.box_coe {F : Type u_1} {s : Finset F} [LO.Box F] [DecidableEq F] :
            s.box = □''s
            theorem Finset.multibox_mem_coe {F : Type u_1} {s : Finset F} {n : } [LO.Box F] {φ : F} [DecidableEq F] :
            theorem Finset.box_mem_coe {F : Type u_1} {s : Finset F} [LO.Box F] {φ : F} [DecidableEq F] :
            φ s.box φ □''s
            theorem Finset.premultibox_coe {F : Type u_1} {s : Finset F} {n : } [LO.Box F] :
            theorem Finset.prebox_coe {F : Type u_1} {s : Finset F} [LO.Box F] :
            s.prebox = □''⁻¹s
            theorem Finset.prebox_box_eq_of_subset_box {F : Type u_1} [LO.Box F] [DecidableEq F] {s : Finset F} {t : Set F} (hs : s □''t) :
            s.prebox.box = s
            @[simp]
            theorem Finset.eq_dia_multidia_one {F : Type u_1} {s : Finset F} [LO.Dia F] [DecidableEq F] :
            s.dia = Finset.multidia 1 s
            @[simp]
            theorem Finset.eq_predia_premultidia_one {F : Type u_1} {s : Finset F} [LO.Dia F] :
            s.predia = Finset.premultidia 1 s
            theorem Finset.multidia_coe {F : Type u_1} {s : Finset F} {n : } [LO.Dia F] [DecidableEq F] :
            (Finset.multidia n s) = ◇''^[n]s
            theorem Finset.dia_coe {F : Type u_1} {s : Finset F} [LO.Dia F] [DecidableEq F] :
            s.dia = ◇''s
            theorem Finset.multidia_mem_coe {F : Type u_1} {s : Finset F} {n : } [LO.Dia F] {φ : F} [DecidableEq F] :
            theorem Finset.dia_mem_coe {F : Type u_1} {s : Finset F} [LO.Dia F] {φ : F} [DecidableEq F] :
            φ s.dia φ ◇''s
            theorem Finset.premultidia_coe {F : Type u_1} {s : Finset F} {n : } [LO.Dia F] :
            theorem Finset.predia_coe {F : Type u_1} {s : Finset F} [LO.Dia F] :
            s.predia = ◇''⁻¹s
            theorem Finset.predia_dia_eq_of_subset_dia {F : Type u_1} [LO.Dia F] [DecidableEq F] {s : Finset F} {t : Set F} (hs : s ◇''t) :
            s.predia.dia = s
            @[reducible, inline]
            noncomputable abbrev List.multibox {F : Type u_1} [DecidableEq F] [LO.Box F] (n : ) :
            List FList F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            noncomputable abbrev List.multidia {F : Type u_1} [DecidableEq F] [LO.Dia F] (n : ) :
            List FList F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            noncomputable abbrev List.box {F : Type u_1} [DecidableEq F] [LO.Box F] :
            List FList F
            Equations
            @[reducible, inline]
            noncomputable abbrev List.dia {F : Type u_1} [DecidableEq F] [LO.Dia F] :
            List FList F
            Equations
            @[reducible, inline]
            noncomputable abbrev List.premultibox {F : Type u_1} [DecidableEq F] [LO.Box F] (n : ) :
            List FList F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            noncomputable abbrev List.premultidia {F : Type u_1} [DecidableEq F] [LO.Dia F] (n : ) :
            List FList F
            Equations
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            noncomputable abbrev List.prebox {F : Type u_1} [DecidableEq F] [LO.Box F] :
            List FList F
            Equations
            @[reducible, inline]
            noncomputable abbrev List.predia {F : Type u_1} [DecidableEq F] [LO.Dia F] :
            List FList F
            Equations
            theorem List.forall_multibox_of_subset_multibox {F : Type u_1} {l : List F} {s : Set F} {n : } [LO.Box F] (h : φl, φ □''^[n]s) (φ : F) :
            φ lψs, φ = □^[n]ψ
            theorem List.forall_box_of_subset_box {F : Type u_1} {l : List F} {s : Set F} [LO.Box F] (h : φl, φ □''s) (φ : F) :
            φ lψs, φ = ψ
            theorem List.forall_multidia_of_subset_multidia {F : Type u_1} {l : List F} {s : Set F} {n : } [LO.Dia F] (h : φl, φ ◇''^[n]s) (φ : F) :
            φ lψs, φ = ◇^[n]ψ
            theorem List.forall_dia_of_subset_dia {F : Type u_1} {l : List F} {s : Set F} [LO.Dia F] (h : φl, φ ◇''s) (φ : F) :
            φ lψs, φ = ψ
            @[simp]
            theorem List.eq_box_multibox_one {F : Type u_1} {l : List F} [DecidableEq F] [LO.Box F] :
            @[simp]
            theorem List.multibox_nil {F : Type u_1} [DecidableEq F] [LO.Box F] {n : } :
            □'^[n][] = []
            @[simp]
            theorem List.box_nil {F : Type u_1} [DecidableEq F] [LO.Box F] :
            □'[] = []
            @[simp]
            theorem List.premultibox_nil {F : Type u_1} [DecidableEq F] [LO.Box F] {n : } :
            @[simp]
            theorem List.prebox_nil {F : Type u_1} [DecidableEq F] [LO.Box F] :
            @[simp]
            theorem List.multibox_single {F : Type u_1} {φ : F} [DecidableEq F] [LO.Box F] {n : } :
            □'^[n][φ] = [□^[n]φ]
            @[simp]
            theorem List.box_single {F : Type u_1} {φ : F} [DecidableEq F] [LO.Box F] :
            □'[φ] = [φ]
            theorem List.multibox_cons {F : Type u_1} {l : List F} {φ : F} [DecidableEq F] [LO.Box F] {n : } (hl : φl) :
            (□'^[n](φ :: l)).Perm (□^[n]φ :: □'^[n]l)
            theorem List.box_cons {F : Type u_1} {l : List F} {φ : F} [DecidableEq F] [LO.Box F] (hl : φl) :
            (□'(φ :: l)).Perm (φ :: □'l)
            @[simp]
            theorem List.eq_dia_multidia_one {F : Type u_1} {l : List F} [DecidableEq F] [LO.Dia F] :
            @[simp]
            theorem List.multidia_nil {F : Type u_1} [DecidableEq F] [LO.Dia F] {n : } :
            ◇'^[n][] = []
            @[simp]
            theorem List.dia_nil {F : Type u_1} [DecidableEq F] [LO.Dia F] :
            ◇'[] = []
            @[simp]
            theorem List.premultidia_nil {F : Type u_1} [DecidableEq F] [LO.Dia F] {n : } :
            @[simp]
            theorem List.predia_nil {F : Type u_1} [DecidableEq F] [LO.Dia F] :
            @[simp]
            theorem List.multidia_single {F : Type u_1} {φ : F} [DecidableEq F] [LO.Dia F] {n : } :
            ◇'^[n][φ] = [◇^[n]φ]
            @[simp]
            theorem List.dia_single {F : Type u_1} {φ : F} [DecidableEq F] [LO.Dia F] :
            ◇'[φ] = [φ]
            theorem List.multidia_cons {F : Type u_1} {l : List F} {φ : F} [DecidableEq F] [LO.Dia F] {n : } (hl : φl) :
            (◇'^[n](φ :: l)).Perm (◇^[n]φ :: ◇'^[n]l)
            theorem List.dia_cons {F : Type u_1} {l : List F} {φ : F} [DecidableEq F] [LO.Dia F] (hl : φl) :
            (◇'(φ :: l)).Perm (φ :: ◇'l)