Documentation

Foundation.Modal.NNFormula

inductive LO.Modal.NNFormula (α : Type u) :
Instances For
    Equations
    Instances For
      def LO.Modal.NNFormula.imp {α : Type u} (φ ψ : NNFormula α) :
      Equations
      • φ.imp ψ = φ.neg.or ψ
      Instances For
        theorem LO.Modal.NNFormula.or_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.or ψ = φ ψ
        theorem LO.Modal.NNFormula.and_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.and ψ = φ ψ
        theorem LO.Modal.NNFormula.imp_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.imp ψ = φ ψ
        theorem LO.Modal.NNFormula.box_eq {α : Type u} {φ : NNFormula α} :
        φ.box = φ
        theorem LO.Modal.NNFormula.dia_eq {α : Type u} {φ : NNFormula α} :
        φ.dia = φ
        @[simp]
        theorem LO.Modal.NNFormula.imp_eq' {α : Type u} {φ ψ : NNFormula α} :
        φ ψ = φ ψ
        @[simp]
        theorem LO.Modal.NNFormula.iff_eq {α : Type u} {φ ψ : NNFormula α} :
        φ ψ = (φ ψ) (ψ φ)
        @[simp]
        theorem LO.Modal.NNFormula.and_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.or_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.imp_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.neg_inj {α : Type u} (φ ψ : Formula α) :
        φ = ψ φ = ψ
        theorem LO.Modal.NNFormula.neg_eq {α : Type u} {φ : NNFormula α} :
        φ.neg = φ
        @[simp]
        theorem LO.Modal.NNFormula.neg_atom {α : Type u} (a : α) :
        @[simp]
        theorem LO.Modal.NNFormula.neg_natom {α : Type u} (a : α) :
        theorem LO.Modal.NNFormula.negneg {α : Type u} {φ : NNFormula α} :
        φ = φ
        Equations
        Instances For
          Equations
          Equations
          Instances For
            @[simp]
            theorem LO.Modal.NNFormula.toFormula_atom {α : Type u} (a : α) :
            (atom a).toFormula = Formula.atom a
            @[simp]
            theorem LO.Modal.NNFormula.toFormula_natom {α : Type u} (a : α) :
            (natom a).toFormula = Formula.atom a
            @[simp]
            theorem LO.Modal.NNFormula.toFormula_falsum {α : Type u} :
            .toFormula =
            @[simp]
            theorem LO.Modal.NNFormula.toFormula_verum {α : Type u} :
            .toFormula =
            def LO.Modal.NNFormula.cases' {α : Type u} {C : NNFormula αSort v} (hAtom : (a : α) → C (atom a)) (hNatom : (a : α) → C (natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : NNFormula α) → C (φ ψ)) (hAnd : (φ ψ : NNFormula α) → C (φ ψ)) (hBox : (φ : NNFormula α) → C (φ)) (hDia : (φ : NNFormula α) → C (φ)) (φ : NNFormula α) :
            C φ
            Equations
            Instances For
              def LO.Modal.NNFormula.rec' {α : Type u} {C : NNFormula αSort v} (hAtom : (a : α) → C (atom a)) (hNatom : (a : α) → C (natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : NNFormula α) → C φC ψC (φ ψ)) (hAnd : (φ ψ : NNFormula α) → C φC ψC (φ ψ)) (hBox : (φ : NNFormula α) → C φC (φ)) (hDia : (φ : NNFormula α) → C φC (φ)) (φ : NNFormula α) :
              C φ
              Equations
              Instances For
                Equations
                Instances For
                  @[irreducible]
                  Equations
                  Instances For
                    Equations
                    Instances For
                      @[simp]
                      theorem LO.Modal.Formula.toNNFormula_atom {α : Type u} (a : α) :
                      (atom a).toNNFormula = NNFormula.atom a
                      @[simp]
                      theorem LO.Modal.Formula.toNNFormula_falsum {α : Type u} :
                      .toNNFormula =