Documentation

Foundation.Modal.NNFormula

inductive LO.Modal.NNFormula (α : Type u) :
Instances For
    Equations
    • LO.Modal.instDecidableEqNNFormula = LO.Modal.decEqNNFormula✝
    Equations
    Instances For
      Equations
      • φ.imp ψ = φ.neg.or ψ
      Instances For
        Equations
        • LO.Modal.NNFormula.instBasicModalLogicalConnective = LO.BasicModalLogicalConnective.mk
        theorem LO.Modal.NNFormula.or_eq {α : Type u} {φ ψ : LO.Modal.NNFormula α} :
        φ.or ψ = φ ψ
        theorem LO.Modal.NNFormula.and_eq {α : Type u} {φ ψ : LO.Modal.NNFormula α} :
        φ.and ψ = φ ψ
        theorem LO.Modal.NNFormula.imp_eq {α : Type u} {φ ψ : LO.Modal.NNFormula α} :
        φ.imp ψ = φ ψ
        theorem LO.Modal.NNFormula.box_eq {α : Type u} {φ : LO.Modal.NNFormula α} :
        φ.box = φ
        theorem LO.Modal.NNFormula.dia_eq {α : Type u} {φ : LO.Modal.NNFormula α} :
        φ.dia = φ
        @[simp]
        theorem LO.Modal.NNFormula.imp_eq' {α : Type u} {φ ψ : LO.Modal.NNFormula α} :
        φ ψ = φ ψ
        @[simp]
        theorem LO.Modal.NNFormula.iff_eq {α : Type u} {φ ψ : LO.Modal.NNFormula α} :
        φ ψ = (φ ψ) (ψ φ)
        theorem LO.Modal.NNFormula.falsum_eq {α : Type u} :
        LO.Modal.NNFormula.falsum =
        theorem LO.Modal.NNFormula.verum_eq {α : Type u} :
        LO.Modal.NNFormula.verum =
        @[simp]
        theorem LO.Modal.NNFormula.and_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : LO.Modal.Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.or_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : LO.Modal.Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.imp_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : LO.Modal.Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.neg_inj {α : Type u} (φ ψ : LO.Modal.Formula α) :
        φ = ψ φ = ψ
        theorem LO.Modal.NNFormula.neg_eq {α : Type u} {φ : LO.Modal.NNFormula α} :
        φ.neg = φ
        Equations
        Instances For
          Equations
          Equations
          Instances For
            Equations
            • LO.Modal.NNFormula.instCoeFormula = { coe := LO.Modal.NNFormula.toFormula }
            def LO.Modal.NNFormula.cases' {α : Type u} {C : LO.Modal.NNFormula αSort v} (hAtom : (a : α) → C (LO.Modal.NNFormula.atom a)) (hNatom : (a : α) → C (LO.Modal.NNFormula.natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : LO.Modal.NNFormula α) → C (φ ψ)) (hAnd : (φ ψ : LO.Modal.NNFormula α) → C (φ ψ)) (hBox : (φ : LO.Modal.NNFormula α) → C (φ)) (hDia : (φ : LO.Modal.NNFormula α) → C (φ)) (φ : LO.Modal.NNFormula α) :
            C φ
            Equations
            Instances For
              def LO.Modal.NNFormula.rec' {α : Type u} {C : LO.Modal.NNFormula αSort v} (hAtom : (a : α) → C (LO.Modal.NNFormula.atom a)) (hNatom : (a : α) → C (LO.Modal.NNFormula.natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : LO.Modal.NNFormula α) → C φC ψC (φ ψ)) (hAnd : (φ ψ : LO.Modal.NNFormula α) → C φC ψC (φ ψ)) (hBox : (φ : LO.Modal.NNFormula α) → C φC (φ)) (hDia : (φ : LO.Modal.NNFormula α) → C φC (φ)) (φ : LO.Modal.NNFormula α) :
              C φ
              Equations
              Instances For
                Equations
                Instances For
                  @[irreducible]
                  Equations
                  Instances For
                    Equations
                    • LO.Modal.NNFormula.instEncodable = { encode := LO.Modal.NNFormula.toNat, decode := LO.Modal.NNFormula.ofNat, encodek := }
                    Equations
                    Instances For
                      Equations
                      • LO.Modal.Formula.instCoeNNFormula = { coe := LO.Modal.Formula.toNNFormula }