Documentation

Foundation.Modal.System.Basic

class LO.System.Necessitation {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) :
Type (max u_2 u_3)
  • nec {φ : F} : 𝓢 φ𝓢 φ
Instances
def LO.System.nec {S : Type u_1} {F : Type u_2} {inst✝ : BasicModalLogicalConnective F} {inst✝¹ : System F S} {𝓢 : S} [self : Necessitation 𝓢] {φ : F} :
𝓢 φ𝓢 φ

Alias of LO.System.Necessitation.nec.

Equations
theorem LO.System.nec! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Necessitation 𝓢] {φ : F} :
𝓢 ⊢! φ𝓢 ⊢! φ
def LO.System.multinec {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Necessitation 𝓢] {φ : F} {n : } :
𝓢 φ𝓢 □^[n]φ
Equations
theorem LO.System.multinec! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Necessitation 𝓢] {φ : F} {n : } :
𝓢 ⊢! φ𝓢 ⊢! □^[n]φ
def LO.System.unnec {S : Type u_1} {F : Type u_2} {inst✝ : BasicModalLogicalConnective F} {inst✝¹ : System F S} {𝓢 : S} [self : Unnecessitation 𝓢] {φ : F} :
𝓢 φ𝓢 φ

Alias of LO.System.Unnecessitation.unnec.

Equations
theorem LO.System.unnec! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Unnecessitation 𝓢] {φ : F} :
𝓢 ⊢! φ𝓢 ⊢! φ
def LO.System.multiunnec {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Unnecessitation 𝓢] {n : } {φ : F} :
𝓢 □^[n]φ𝓢 φ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.multiunnec! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Unnecessitation 𝓢] {n : } {φ : F} :
𝓢 ⊢! □^[n]φ𝓢 ⊢! φ
class LO.System.LoebRule {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] [LogicalConnective F] (𝓢 : S) :
Type (max u_2 u_3)
Instances
def LO.System.loeb {S : Type u_1} {F : Type u_2} {inst✝ : BasicModalLogicalConnective F} {inst✝¹ : System F S} {inst✝² : LogicalConnective F} {𝓢 : S} [self : LoebRule 𝓢] {φ : F} :
𝓢 φ φ𝓢 φ

Alias of LO.System.LoebRule.loeb.

Equations
theorem LO.System.loeb! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [LoebRule 𝓢] {φ : F} :
𝓢 ⊢! φ φ𝓢 ⊢! φ
class LO.System.HenkinRule {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] [LogicalConnective F] (𝓢 : S) :
Type (max u_2 u_3)
Instances
def LO.System.henkin {S : Type u_1} {F : Type u_2} {inst✝ : BasicModalLogicalConnective F} {inst✝¹ : System F S} {inst✝² : LogicalConnective F} {𝓢 : S} [self : HenkinRule 𝓢] {φ : F} :
𝓢 φ φ𝓢 φ

Alias of LO.System.HenkinRule.henkin.

Equations
theorem LO.System.henkin! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HenkinRule 𝓢] {φ : F} :
𝓢 ⊢! φ φ𝓢 ⊢! φ
@[simp]
theorem LO.System.dia_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasDiaDuality 𝓢] {φ : F} :
𝓢 ⊢! φ (φ)
def LO.System.axiomK {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] {φ ψ : F} :
𝓢 (φ ψ) φ ψ
Equations
@[simp]
theorem LO.System.axiomK! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) φ ψ
instance LO.System.instHasAxiomKContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomK' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 (φ ψ)) :
𝓢 φ ψ
Equations
@[simp]
theorem LO.System.axiomK'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! (φ ψ)) :
𝓢 ⊢! φ ψ
def LO.System.axiomK'' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] [System.Minimal 𝓢] {φ ψ : F} (h₁ : 𝓢 (φ ψ)) (h₂ : 𝓢 φ) :
𝓢 ψ
Equations
@[simp]
theorem LO.System.axiomK''! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomK 𝓢] [System.Minimal 𝓢] {φ ψ : F} (h₁ : 𝓢 ⊢! (φ ψ)) (h₂ : 𝓢 ⊢! φ) :
𝓢 ⊢! ψ
def LO.System.axiomT {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomT 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.axiomT! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomT 𝓢] {φ : F} :
𝓢 ⊢! φ φ
instance LO.System.instHasAxiomTContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomT 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomT' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomT 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 φ) :
𝓢 φ
Equations
@[simp]
theorem LO.System.axiomT'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomT 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
def LO.System.axiomD {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomD 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.axiomD! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomD 𝓢] {φ : F} :
𝓢 ⊢! φ φ
instance LO.System.instHasAxiomDContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomD 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomD' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomD 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 φ) :
𝓢 φ
Equations
theorem LO.System.axiomD'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomD 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
@[simp]
theorem LO.System.axiomP! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomP 𝓢] :
class LO.System.HasAxiomB {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] [Dia F] (𝓢 : S) :
Type (max u_2 u_3)
Instances
def LO.System.axiomB {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomB 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.axiomB! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomB 𝓢] {φ : F} :
𝓢 ⊢! φ φ
instance LO.System.instHasAxiomBContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomB 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomB' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomB 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 φ) :
𝓢 φ
Equations
@[simp]
theorem LO.System.axiomB'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomB 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
def LO.System.axiomFour {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomFour 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.axiomFour! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomFour 𝓢] {φ : F} :
𝓢 ⊢! φ φ
instance LO.System.instHasAxiomFourContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomFour 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomFour' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomFour 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 φ) :
𝓢 φ
Equations
def LO.System.axiomFour'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomFour 𝓢] [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
Equations
  • =
def LO.System.axiomFive {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomFive 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.axiomFive! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomFive 𝓢] {φ : F} :
𝓢 ⊢! φ φ
instance LO.System.instHasAxiomFiveContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [Dia F] [HasAxiomFive 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
def LO.System.axiomL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomL 𝓢] {φ : F} :
𝓢 (φ φ) φ
Equations
@[simp]
theorem LO.System.axiomL! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomL 𝓢] {φ : F} :
𝓢 ⊢! (φ φ) φ
instance LO.System.instHasAxiomLContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomL 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
Equations
class LO.System.HasAxiomDot2 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] [Dia F] (𝓢 : S) :
Type (max u_2 u_3)
Instances
    class LO.System.HasAxiomDot3 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) :
    Type (max u_2 u_3)
    Instances
      def LO.System.axiomGrz {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomGrz 𝓢] {φ : F} :
      𝓢 ((φ φ) φ) φ
      Equations
      @[simp]
      theorem LO.System.axiomGrz! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomGrz 𝓢] {φ : F} :
      𝓢 ⊢! ((φ φ) φ) φ
      instance LO.System.instHasAxiomGrzContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomGrz 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
      Equations
      def LO.System.axiomTc {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomTc 𝓢] {φ : F} :
      𝓢 φ φ
      Equations
      @[simp]
      theorem LO.System.axiomTc! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomTc 𝓢] {φ : F} :
      𝓢 ⊢! φ φ
      instance LO.System.instHasAxiomTcContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomTc 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
      Equations
      def LO.System.axiomVer {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomVer 𝓢] {φ : F} :
      𝓢 φ
      Equations
      @[simp]
      theorem LO.System.axiomVer! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomVer 𝓢] {φ : F} :
      𝓢 ⊢! φ
      instance LO.System.instHasAxiomVerContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomVer 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
      Equations
      def LO.System.axiomH {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomH 𝓢] {φ : F} :
      𝓢 (φ φ) φ
      Equations
      @[simp]
      theorem LO.System.axiomH! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomH 𝓢] {φ : F} :
      𝓢 ⊢! (φ φ) φ
      instance LO.System.instHasAxiomHContext {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [HasAxiomH 𝓢] [System.Minimal 𝓢] (Γ : Context F 𝓢) :
      Equations
      class LO.System.K {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.Classical 𝓢, LO.System.Necessitation 𝓢, LO.System.HasAxiomK 𝓢, LO.System.HasDiaDuality 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KD {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KP {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomP 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KB {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomB 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KT {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KTc {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomTc 𝓢 :
      Type (max u_2 u_3)
      Instances
      class LO.System.KTB {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomB 𝓢 :
      Type (max u_2 u_3)
      Instances
        class LO.System.KD45 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFour 𝓢, LO.System.HasAxiomFive 𝓢 :
        Type (max u_2 u_3)
        Instances
          class LO.System.KB4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomB 𝓢, LO.System.HasAxiomFour 𝓢 :
          Type (max u_2 u_3)
          Instances
            class LO.System.KDB {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomB 𝓢 :
            Type (max u_2 u_3)
            Instances
              class LO.System.KD4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFour 𝓢 :
              Type (max u_2 u_3)
              Instances
                class LO.System.KD5 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFive 𝓢 :
                Type (max u_2 u_3)
                Instances
                  class LO.System.K45 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomFour 𝓢, LO.System.HasAxiomFive 𝓢 :
                  Type (max u_2 u_3)
                  Instances
                    class LO.System.Triv {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomTc 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    instance LO.System.instKTOfTriv {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) [System.Triv 𝓢] :
                    Equations
                    class LO.System.Ver {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomVer 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.K4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomFour 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.K5 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomFive 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.S4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomFour 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    instance LO.System.instK4OfS4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) [System.S4 𝓢] :
                    Equations
                    instance LO.System.instKTOfS4 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) [System.S4 𝓢] :
                    Equations
                    class LO.System.S4Dot2 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.S4 𝓢, LO.System.HasAxiomDot2 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.S4Dot3 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.S4 𝓢, LO.System.HasAxiomDot3 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.S5 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomFive 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    instance LO.System.instKTOfS5 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) [System.S5 𝓢] :
                    Equations
                    instance LO.System.instK5OfS5 {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) [System.S5 𝓢] :
                    Equations
                    class LO.System.GL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomL 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    class LO.System.Grz {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K 𝓢, LO.System.HasAxiomGrz 𝓢 :
                    Type (max u_2 u_3)
                    Instances
                    theorem LO.System.modal_disjunctive {S : Type u_1} {F : Type u_2} {inst✝ : BasicModalLogicalConnective F} {inst✝¹ : System F S} {𝓢 : S} [self : ModalDisjunctive 𝓢] {φ ψ : F} :
                    𝓢 ⊢! φ ψ𝓢 ⊢! φ 𝓢 ⊢! ψ

                    Alias of LO.System.ModalDisjunctive.modal_disjunctive.

                    noncomputable instance LO.System.unnecessitation_of_modalDisjunctive {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [System.Minimal 𝓢] [ModalDisjunctive 𝓢] :
                    Equations