class
LO.System.Necessitation
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.nec
{S : Type u_1}
{F : Type u_2}
{inst✝ : BasicModalLogicalConnective F}
{inst✝¹ : System F S}
{𝓢 : S}
[self : Necessitation 𝓢]
{φ : F}
:
Alias of LO.System.Necessitation.nec
.
Equations
theorem
LO.System.nec!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Necessitation 𝓢]
{φ : F}
:
def
LO.System.multinec
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Necessitation 𝓢]
{φ : F}
{n : ℕ}
:
Equations
- LO.System.multinec h = Nat.recAux (id h) (fun (n : ℕ) (ih : 𝓢 ⊢ □^[n]φ) => ⋯.mpr (LO.System.nec ih)) n
theorem
LO.System.multinec!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Necessitation 𝓢]
{φ : F}
{n : ℕ}
:
class
LO.System.Unnecessitation
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.unnec
{S : Type u_1}
{F : Type u_2}
{inst✝ : BasicModalLogicalConnective F}
{inst✝¹ : System F S}
{𝓢 : S}
[self : Unnecessitation 𝓢]
{φ : F}
:
Alias of LO.System.Unnecessitation.unnec
.
theorem
LO.System.unnec!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Unnecessitation 𝓢]
{φ : F}
:
def
LO.System.multiunnec
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Unnecessitation 𝓢]
{n : ℕ}
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.System.multiunnec!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Unnecessitation 𝓢]
{n : ℕ}
{φ : F}
:
class
LO.System.LoebRule
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[LogicalConnective F]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.loeb
{S : Type u_1}
{F : Type u_2}
{inst✝ : BasicModalLogicalConnective F}
{inst✝¹ : System F S}
{inst✝² : LogicalConnective F}
{𝓢 : S}
[self : LoebRule 𝓢]
{φ : F}
:
Alias of LO.System.LoebRule.loeb
.
Equations
class
LO.System.HenkinRule
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[LogicalConnective F]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.henkin
{S : Type u_1}
{F : Type u_2}
{inst✝ : BasicModalLogicalConnective F}
{inst✝¹ : System F S}
{inst✝² : LogicalConnective F}
{𝓢 : S}
[self : HenkinRule 𝓢]
{φ : F}
:
Alias of LO.System.HenkinRule.henkin
.
theorem
LO.System.henkin!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HenkinRule 𝓢]
{φ : F}
:
class
LO.System.HasDiaDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
- dia_dual (φ : F) : 𝓢 ⊢ Axioms.DiaDuality φ
def
LO.System.diaDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasDiaDuality 𝓢]
{φ : F}
:
@[simp]
theorem
LO.System.dia_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasDiaDuality 𝓢]
{φ : F}
:
class
LO.System.HasAxiomK
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[LogicalConnective F]
[Box F]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomK
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
{φ ψ : F}
:
Equations
instance
LO.System.instHasAxiomKFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomKFiniteContext Γ = { K := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.axiomK }
instance
LO.System.instHasAxiomKContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomKContext Γ = { K := fun (x x_1 : F) => LO.System.Context.of LO.System.axiomK }
def
LO.System.axiomK'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ □(φ ➝ ψ))
:
Equations
@[simp]
theorem
LO.System.axiomK'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! □(φ ➝ ψ))
:
def
LO.System.axiomK''
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
{φ ψ : F}
(h₁ : 𝓢 ⊢ □(φ ➝ ψ))
(h₂ : 𝓢 ⊢ □φ)
:
Equations
- LO.System.axiomK'' h₁ h₂ = LO.System.axiomK' h₁⨀h₂
@[simp]
theorem
LO.System.axiomK''!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomK 𝓢]
[System.Minimal 𝓢]
{φ ψ : F}
(h₁ : 𝓢 ⊢! □(φ ➝ ψ))
(h₂ : 𝓢 ⊢! □φ)
:
class
LO.System.HasAxiomT
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomT
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomT!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomTFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomTFiniteContext Γ = { T := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomT }
instance
LO.System.instHasAxiomTContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomTContext Γ = { T := fun (x : F) => LO.System.Context.of LO.System.axiomT }
def
LO.System.axiomT'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢ □φ)
:
𝓢 ⊢ φ
Equations
@[simp]
theorem
LO.System.axiomT'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomT 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! □φ)
:
𝓢 ⊢! φ
class
LO.System.HasAxiomD
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[Dia F]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomD
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomD 𝓢]
{φ : F}
:
Equations
instance
LO.System.instHasAxiomDFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomD 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomDFiniteContext Γ = { D := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomD }
instance
LO.System.instHasAxiomDContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomD 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomDContext Γ = { D := fun (x : F) => LO.System.Context.of LO.System.axiomD }
def
LO.System.axiomD'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomD 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢ □φ)
:
Equations
theorem
LO.System.axiomD'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomD 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! □φ)
:
class
LO.System.HasAxiomP
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type u_3
def
LO.System.axiomP
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomP 𝓢]
:
Equations
instance
LO.System.instHasAxiomPFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomP 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
instance
LO.System.instHasAxiomPContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomP 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
class
LO.System.HasAxiomB
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[Dia F]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomB
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomB 𝓢]
{φ : F}
:
Equations
instance
LO.System.instHasAxiomBFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomB 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomBFiniteContext Γ = { B := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomB }
instance
LO.System.instHasAxiomBContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomB 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomBContext Γ = { B := fun (x : F) => LO.System.Context.of LO.System.axiomB }
def
LO.System.axiomB'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomB 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢ φ)
:
Equations
@[simp]
theorem
LO.System.axiomB'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomB 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! φ)
:
class
LO.System.HasAxiomFour
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
- Four (φ : F) : 𝓢 ⊢ Axioms.Four φ
def
LO.System.axiomFour
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomFour!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomFourFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomFourFiniteContext Γ = { Four := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomFour }
instance
LO.System.instHasAxiomFourContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomFourContext Γ = { Four := fun (x : F) => LO.System.Context.of LO.System.axiomFour }
def
LO.System.axiomFour'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢ □φ)
:
Equations
def
LO.System.axiomFour'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomFour 𝓢]
[System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! □φ)
:
Equations
- ⋯ = ⋯
class
LO.System.HasAxiomFive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[Dia F]
(𝓢 : S)
:
Type (max u_2 u_3)
- Five (φ : F) : 𝓢 ⊢ Axioms.Five φ
def
LO.System.axiomFive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomFive 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomFive!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomFive 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomFiveFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomFive 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomFiveFiniteContext Γ = { Five := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomFive }
instance
LO.System.instHasAxiomFiveContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Dia F]
[HasAxiomFive 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomFiveContext Γ = { Five := fun (x : F) => LO.System.Context.of LO.System.axiomFive }
class
LO.System.HasAxiomL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomL 𝓢]
{φ : F}
:
Equations
instance
LO.System.instHasAxiomLFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomL 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomLFiniteContext Γ = { L := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomL }
instance
LO.System.instHasAxiomLContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomL 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomLContext Γ = { L := fun (x : F) => LO.System.Context.of LO.System.axiomL }
class
LO.System.HasAxiomDot2
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
[Dia F]
(𝓢 : S)
:
Type (max u_2 u_3)
- Dot2 (φ : F) : 𝓢 ⊢ Axioms.Dot2 φ
Instances
class
LO.System.HasAxiomDot3
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
- Dot3 (φ ψ : F) : 𝓢 ⊢ Axioms.Dot3 φ ψ
Instances
class
LO.System.HasAxiomGrz
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
- Grz (φ : F) : 𝓢 ⊢ Axioms.Grz φ
def
LO.System.axiomGrz
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomGrz 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomGrz!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomGrz 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomGrzFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomGrz 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomGrzFiniteContext Γ = { Grz := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomGrz }
instance
LO.System.instHasAxiomGrzContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomGrz 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomGrzContext Γ = { Grz := fun (x : F) => LO.System.Context.of LO.System.axiomGrz }
class
LO.System.HasAxiomTc
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomTc
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomTc 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomTc!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomTc 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomTcFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomTc 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomTcFiniteContext Γ = { Tc := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomTc }
instance
LO.System.instHasAxiomTcContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomTc 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomTcContext Γ = { Tc := fun (x : F) => LO.System.Context.of LO.System.axiomTc }
class
LO.System.HasAxiomVer
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
- Ver (φ : F) : 𝓢 ⊢ Axioms.Ver φ
def
LO.System.axiomVer
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomVer 𝓢]
{φ : F}
:
Equations
@[simp]
theorem
LO.System.axiomVer!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomVer 𝓢]
{φ : F}
:
instance
LO.System.instHasAxiomVerFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomVer 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomVerFiniteContext Γ = { Ver := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomVer }
instance
LO.System.instHasAxiomVerContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomVer 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomVerContext Γ = { Ver := fun (x : F) => LO.System.Context.of LO.System.axiomVer }
class
LO.System.HasAxiomH
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
Type (max u_2 u_3)
def
LO.System.axiomH
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomH 𝓢]
{φ : F}
:
Equations
instance
LO.System.instHasAxiomHFiniteContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomH 𝓢]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- LO.System.instHasAxiomHFiniteContext Γ = { H := fun (x : F) => LO.System.FiniteContext.of LO.System.axiomH }
instance
LO.System.instHasAxiomHContext
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[HasAxiomH 𝓢]
[System.Minimal 𝓢]
(Γ : Context F 𝓢)
:
Equations
- LO.System.instHasAxiomHContext Γ = { H := fun (x : F) => LO.System.Context.of LO.System.axiomH }
instance
LO.System.instHasDiaDualityOfMinimalOfModalDeMorganOfHasAxiomDNE
{S : Type u_1}
{F : Type u_2}
[System F S]
[BasicModalLogicalConnective F]
{𝓢 : S}
[System.Minimal 𝓢]
[ModalDeMorgan F]
[HasAxiomDNE 𝓢]
:
Equations
- LO.System.instHasDiaDualityOfMinimalOfModalDeMorganOfHasAxiomDNE = { dia_dual := fun (φ : F) => ⋯.mpr (LO.System.iffId (◇φ)) }
instance
LO.System.instHasDiaDualityOfMinimalOfDiaAbbrev
{S : Type u_1}
{F : Type u_2}
[System F S]
[BasicModalLogicalConnective F]
{𝓢 : S}
[System.Minimal 𝓢]
[DiaAbbrev F]
:
Equations
- LO.System.instHasDiaDualityOfMinimalOfDiaAbbrev = { dia_dual := fun (φ : F) => ⋯.mpr (LO.System.iffId (∼□(∼φ))) }
instance
LO.System.instUnnecessitationOfModusPonensOfHasAxiomT
{S : Type u_1}
{F : Type u_2}
[System F S]
[BasicModalLogicalConnective F]
{𝓢 : S}
[ModusPonens 𝓢]
[HasAxiomT 𝓢]
:
Equations
- LO.System.instUnnecessitationOfModusPonensOfHasAxiomT = { unnec := fun {φ : F} (hp : 𝓢 ⊢ □φ) => LO.System.axiomT⨀hp }
class
LO.System.K
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.Classical 𝓢, LO.System.Necessitation 𝓢, LO.System.HasAxiomK 𝓢, LO.System.HasDiaDuality 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.KD
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KP
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomP 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KB
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomB 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KT
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.KTc
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomTc 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KTB
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomB 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KD45
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFour 𝓢, LO.System.HasAxiomFive 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KB4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomB 𝓢, LO.System.HasAxiomFour 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KDB
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomB 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KD4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFour 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.KD5
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomD 𝓢, LO.System.HasAxiomFive 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.K45
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomFour 𝓢, LO.System.HasAxiomFive 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.Triv
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomTc 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
instance
LO.System.instKTOfTriv
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.Triv 𝓢]
:
Equations
instance
LO.System.instKTcOfTriv
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.Triv 𝓢]
:
Equations
class
LO.System.Ver
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomVer 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.K4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomFour 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.K5
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomFive 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.S4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomFour 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
instance
LO.System.instK4OfS4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.S4 𝓢]
:
Equations
instance
LO.System.instKTOfS4
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.S4 𝓢]
:
Equations
class
LO.System.S4Dot2
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.S4 𝓢, LO.System.HasAxiomDot2 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.S4Dot3
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.S4 𝓢, LO.System.HasAxiomDot3 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
class
LO.System.S5
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomT 𝓢, LO.System.HasAxiomFive 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
instance
LO.System.instKTOfS5
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.S5 𝓢]
:
Equations
instance
LO.System.instK5OfS5
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
[System.S5 𝓢]
:
Equations
class
LO.System.GL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomL 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.Grz
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K 𝓢, LO.System.HasAxiomGrz 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
class
LO.System.ModalDisjunctive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
:
theorem
LO.System.modal_disjunctive
{S : Type u_1}
{F : Type u_2}
{inst✝ : BasicModalLogicalConnective F}
{inst✝¹ : System F S}
{𝓢 : S}
[self : ModalDisjunctive 𝓢]
{φ ψ : F}
:
instance
LO.System.instModalDisjunctiveOfDisjunctiveOfUnnecessitation
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[Disjunctive 𝓢]
[Unnecessitation 𝓢]
:
noncomputable instance
LO.System.unnecessitation_of_modalDisjunctive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[System.Minimal 𝓢]
[ModalDisjunctive 𝓢]
:
Equations
- LO.System.unnecessitation_of_modalDisjunctive = { unnec := fun {φ : F} (h : 𝓢 ⊢ □φ) => Nonempty.some ⋯ }