def
LO.System.multiboxedImplyDistribute
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
(h : 𝓢 ⊢ □^[n](φ ➝ ψ))
:
Alias of LO.System.multibox_axiomK'
.
Instances For
theorem
LO.System.multiboxed_imply_distribute!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
(h : 𝓢 ⊢! □^[n](φ ➝ ψ))
:
Alias of LO.System.multibox_axiomK'!
.
def
LO.System.boxIff'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ φ ⭤ ψ)
:
Equations
Instances For
@[simp]
theorem
LO.System.box_iff!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
def
LO.System.multiboxIff'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢ φ ⭤ ψ)
:
Equations
- LO.System.multiboxIff' h = Nat.recAux (id h) (fun (n : ℕ) (ih : 𝓢 ⊢ □^[n]φ ⭤ □^[n]ψ) => ⋯.mpr (LO.System.boxIff' ih)) n
Instances For
def
LO.System.diaDuality_mp
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.diaDuality_mp = LO.System.and₁' LO.System.diaDuality
Instances For
@[simp]
theorem
LO.System.diaDuality_mp!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.diaDuality_mpr
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.diaDuality_mpr = LO.System.and₂' LO.System.diaDuality
Instances For
@[simp]
theorem
LO.System.diaDuality_mpr!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.diaDuality'.mp
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢ ◇φ)
:
Equations
- LO.System.diaDuality'.mp h = LO.System.and₁' LO.System.diaDuality⨀h
Instances For
def
LO.System.diaDuality'.mpr
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢ ∼□(∼φ))
:
Equations
- LO.System.diaDuality'.mpr h = LO.System.and₂' LO.System.diaDuality⨀h
Instances For
theorem
LO.System.dia_duality'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.multiDiaDuality
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.multidia_duality!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
theorem
LO.System.multidia_duality'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
def
LO.System.diaIff'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ φ ⭤ ψ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.dia_iff!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
def
LO.System.multidiaIff'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢ φ ⭤ ψ)
:
Equations
- LO.System.multidiaIff' h = Nat.recAux (id h) (fun (n : ℕ) (ih : 𝓢 ⊢ ◇^[n]φ ⭤ ◇^[n]ψ) => ⋯.mpr (LO.System.diaIff' ih)) n
Instances For
@[simp]
theorem
LO.System.multidia_iff!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
def
LO.System.multiboxDuality
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.multibox_duality!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
def
LO.System.boxDuality
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.boxDuality = LO.System.multiboxDuality
Instances For
@[simp]
theorem
LO.System.box_duality!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.boxDuality_mp
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.boxDuality_mp = LO.System.and₁' LO.System.boxDuality
Instances For
@[simp]
theorem
LO.System.boxDuality_mp!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.boxDuality_mp'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢ □φ)
:
Equations
- LO.System.boxDuality_mp' h = LO.System.boxDuality_mp⨀h
Instances For
theorem
LO.System.boxDuality_mp'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢! □φ)
:
def
LO.System.boxDuality_mpr
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.boxDuality_mpr = LO.System.and₂' LO.System.boxDuality
Instances For
@[simp]
theorem
LO.System.boxDuality_mpr!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.boxDuality_mpr'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢ ∼◇(∼φ))
:
Equations
- LO.System.boxDuality_mpr' h = LO.System.boxDuality_mpr⨀h
Instances For
theorem
LO.System.boxDuality_mpr'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢! ∼◇(∼φ))
:
theorem
LO.System.multibox_duality'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
:
theorem
LO.System.box_duality'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.box_dne
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.box_dne = LO.System.axiomK' (LO.System.nec LO.System.dne)
Instances For
@[simp]
theorem
LO.System.box_dne!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.box_dne'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢ □(∼∼φ))
:
Equations
- LO.System.box_dne' h = LO.System.box_dne⨀h
Instances For
theorem
LO.System.box_dne'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(h : 𝓢 ⊢! □(∼∼φ))
:
def
LO.System.multiboxverum
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
:
Equations
- LO.System.multiboxverum = LO.System.multinec LO.System.verum
Instances For
@[simp]
theorem
LO.System.multiboxverum!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
:
def
LO.System.boxverum
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
:
Equations
- LO.System.boxverum = LO.System.multiboxverum
Instances For
@[simp]
theorem
LO.System.boxverum!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
:
def
LO.System.boxdotverum
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
:
Equations
- LO.System.boxdotverum = LO.System.andIntro LO.System.verum LO.System.boxverum
Instances For
@[simp]
theorem
LO.System.boxdotverum!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
:
def
LO.System.implyMultiboxDistribute'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢ φ ➝ ψ)
:
Instances For
def
LO.System.implyBoxDistribute'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ φ ➝ ψ)
:
Instances For
theorem
LO.System.imply_box_distribute'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ➝ ψ)
:
def
LO.System.distribute_multibox_and
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
:
Equations
- LO.System.distribute_multibox_and = LO.System.implyRightAnd (LO.System.implyMultiboxDistribute' LO.System.and₁) (LO.System.implyMultiboxDistribute' LO.System.and₂)
Instances For
@[simp]
theorem
LO.System.distribute_multibox_and!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
:
def
LO.System.distribute_box_and
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- LO.System.distribute_box_and = LO.System.distribute_multibox_and
Instances For
@[simp]
theorem
LO.System.distribute_box_and!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.distribute_multibox_and'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
(h : 𝓢 ⊢ □^[n](φ ⋏ ψ))
:
Equations
- LO.System.distribute_multibox_and' h = LO.System.distribute_multibox_and⨀h
Instances For
theorem
LO.System.distribute_multibox_and'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
(d : 𝓢 ⊢! □^[n](φ ⋏ ψ))
:
def
LO.System.distribute_box_and'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ □(φ ⋏ ψ))
:
Instances For
theorem
LO.System.distribute_box_and'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢! □(φ ⋏ ψ))
:
theorem
LO.System.conj_cons!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
{Γ : List F}
:
@[simp]
theorem
LO.System.distribute_multibox_conj!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{Γ : List F}
:
@[simp]
theorem
LO.System.distribute_box_conj!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{Γ : List F}
:
def
LO.System.collect_box_and
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- LO.System.collect_box_and = LO.System.collect_multibox_and
Instances For
@[simp]
theorem
LO.System.collect_box_and!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.collect_box_and'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ □φ ⋏ □ψ)
:
Equations
Instances For
theorem
LO.System.collect_box_and'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! □φ ⋏ □ψ)
:
theorem
LO.System.multiboxConj'_iff!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{Γ : List F}
:
theorem
LO.System.boxConj'_iff!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{Γ : List F}
:
theorem
LO.System.multiboxconj_of_conjmultibox!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{Γ : List F}
(d : 𝓢 ⊢! ⋀□'^[n]Γ)
:
@[simp]
theorem
LO.System.multibox_cons_conjAux₁!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
{Γ : List F}
:
@[simp]
theorem
LO.System.multibox_cons_conjAux₂!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ : F}
{Γ : List F}
:
@[simp]
theorem
LO.System.collect_multibox_conj!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{Γ : List F}
:
@[simp]
theorem
LO.System.collect_box_conj!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{Γ : List F}
:
def
LO.System.collect_multibox_or
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
:
Equations
- LO.System.collect_multibox_or = LO.System.or₃'' (LO.System.multibox_axiomK' (LO.System.multinec LO.System.or₁)) (LO.System.multibox_axiomK' (LO.System.multinec LO.System.or₂))
Instances For
def
LO.System.collect_box_or
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- LO.System.collect_box_or = LO.System.collect_multibox_or
Instances For
@[simp]
theorem
LO.System.collect_box_or!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.collect_box_or'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ □φ ⋎ □ψ)
:
Equations
Instances For
theorem
LO.System.collect_box_or'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! □φ ⋎ □ψ)
:
def
LO.System.diaOrInst₁
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.dia_or_inst₁!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.diaOrInst₂
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{ψ φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.dia_or_inst₂!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{ψ φ : F}
:
def
LO.System.collect_dia_or
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- LO.System.collect_dia_or = LO.System.or₃'' LO.System.diaOrInst₁ LO.System.diaOrInst₂
Instances For
@[simp]
theorem
LO.System.collect_dia_or!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.collect_dia_or'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ ◇φ ⋎ ◇ψ)
:
Equations
- LO.System.collect_dia_or' h = LO.System.collect_dia_or⨀h
Instances For
@[simp]
theorem
LO.System.collect_dia_or'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! ◇φ ⋎ ◇ψ)
:
@[simp]
theorem
LO.System.distribute_multidia_and!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{φ ψ : F}
:
@[simp]
theorem
LO.System.distribute_dia_and!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
@[simp]
theorem
LO.System.iff_conjmultidia_multidiaconj!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{n : ℕ}
{Γ : List F}
:
theorem
LO.System.distribute_dia_and'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! ◇(φ ⋏ ψ))
:
def
LO.System.boxdotAxiomK
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.boxdot_axiomK!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ ψ : F}
:
def
LO.System.boxdotAxiomT
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.boxdotAxiomT = LO.System.and₁
Instances For
@[simp]
theorem
LO.System.boxdot_axiomT!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.boxdotNec
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(d : 𝓢 ⊢ φ)
:
Equations
Instances For
theorem
LO.System.boxdot_nec!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
(d : 𝓢 ⊢! φ)
:
def
LO.System.boxdotBox
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.boxdotBox = LO.System.and₂
Instances For
theorem
LO.System.boxdot_box!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
def
LO.System.BoxBoxdot_BoxDotbox
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- LO.System.BoxBoxdot_BoxDotbox = LO.System.impTrans'' LO.System.distribute_box_and (LO.System.impId (□φ ⋏ □□φ))
Instances For
theorem
LO.System.boxboxdot_boxdotbox
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
noncomputable def
LO.System.lemma_Grz₁
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.contextual_nec!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.K 𝓢]
{Γ : List F}
{φ : F}
(h : Γ ⊢[𝓢]! φ)
: