Documentation

Foundation.Modal.System.KTc

@[simp]
theorem LO.System.diaT! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓒 : S} [System.KTc 𝓒] {Ο† : F} :
𝓒 ⊒! β—‡Ο† ➝ Ο†
def LO.System.diaT' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓒 : S} [System.KTc 𝓒] {Ο† : F} (h : 𝓒 ⊒ β—‡Ο†) :
𝓒 ⊒ Ο†
Equations
Instances For
    theorem LO.System.diaT'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓒 : S} [System.KTc 𝓒] {Ο† : F} (h : 𝓒 ⊒! β—‡Ο†) :
    𝓒 ⊒! Ο†
    def LO.System.KTc.axiomFour {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓒 : S} [System.KTc 𝓒] {Ο† : F} :
    𝓒 ⊒ Axioms.Four Ο†
    Equations
    Instances For
      instance LO.System.KTc.instHasAxiomFour {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓒 : S} [System.KTc 𝓒] :
      HasAxiomFour 𝓒
      Equations
      def LO.System.KTc.axiomFive {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓒 : S} [System.KTc 𝓒] {Ο† : F} :
      Equations
      Instances For
        instance LO.System.KTc.instHasAxiomFive {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓒 : S} [System.KTc 𝓒] :
        HasAxiomFive 𝓒
        Equations