def
LO.System.diaT
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
:
Equations
Instances For
@[simp]
theorem
LO.System.diaT!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
:
def
LO.System.diaT'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
(h : π’ β’ βΟ)
:
π’ β’ Ο
Equations
Instances For
theorem
LO.System.diaT'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
(h : π’ β’! βΟ)
:
π’ β’! Ο
def
LO.System.KTc.axiomFour
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
:
π’ β’ Axioms.Four Ο
Equations
Instances For
instance
LO.System.KTc.instHasAxiomFour
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{π’ : S}
[System.KTc π’]
:
HasAxiomFour π’
Equations
- LO.System.KTc.instHasAxiomFour = { Four := fun (x : F) => LO.System.KTc.axiomFour }
def
LO.System.KTc.axiomFive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{π’ : S}
[System.KTc π’]
{Ο : F}
:
Equations
Instances For
instance
LO.System.KTc.instHasAxiomFive
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{π’ : S}
[System.KTc π’]
:
HasAxiomFive π’
Equations
- LO.System.KTc.instHasAxiomFive = { Five := fun (x : F) => LO.System.KTc.axiomFive }