def
LO.System.diaT
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
:
Equations
- LO.System.diaT = LO.System.impTrans'' (LO.System.andβ' LO.System.diaDuality) (LO.System.contraβ' LO.System.axiomTc)
Instances For
@[simp]
theorem
LO.System.diaT!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
:
def
LO.System.diaT'
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
(h : π’ β’ βΟ)
:
π’ β’ Ο
Equations
- LO.System.diaT' h = LO.System.diaTβ¨h
Instances For
theorem
LO.System.diaT'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
(h : π’ β’! βΟ)
:
π’ β’! Ο
def
LO.System.KTc.axiomFour
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
:
π’ β’ LO.Axioms.Four Ο
Equations
- LO.System.KTc.axiomFour = LO.System.axiomTc
Instances For
instance
LO.System.KTc.instHasAxiomFour
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
:
Equations
- LO.System.KTc.instHasAxiomFour = { Four := fun (x : F) => LO.System.KTc.axiomFour }
def
LO.System.KTc.axiomFive
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
{Ο : F}
:
Equations
- LO.System.KTc.axiomFive = LO.System.axiomTc
Instances For
instance
LO.System.KTc.instHasAxiomFive
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.KTc π’]
:
Equations
- LO.System.KTc.instHasAxiomFive = { Five := fun (x : F) => LO.System.KTc.axiomFive }