Documentation

Foundation.Logic.HilbertStyle.Supplemental

def LO.System.mdp_in {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
𝓢 p (p q) q
Equations
Instances For
    theorem LO.System.mdp_in! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
    𝓢 ⊢! p (p q) q
    def LO.System.bot_of_mem_either {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} [LO.System.NegationEquiv 𝓢] (h₁ : p Γ) (h₂ : p Γ) :
    Γ ⊢[𝓢]
    Equations
    Instances For
      @[simp]
      theorem LO.System.bot_of_mem_either! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} [LO.System.NegationEquiv 𝓢] (h₁ : p Γ) (h₂ : p Γ) :
      Γ ⊢[𝓢]!
      def LO.System.efq_of_mem_either {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (h₁ : p Γ) (h₂ : p Γ) :
      Γ ⊢[𝓢] q
      Equations
      Instances For
        @[simp]
        theorem LO.System.efq_of_mem_either! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (h₁ : p Γ) (h₂ : p Γ) :
        Γ ⊢[𝓢]! q
        def LO.System.efq_imply_not₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
        𝓢 p p q
        Equations
        Instances For
          @[simp]
          theorem LO.System.efq_imply_not₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
          𝓢 ⊢! p p q
          def LO.System.efq_imply_not₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
          𝓢 p p q
          Equations
          Instances For
            @[simp]
            theorem LO.System.efq_imply_not₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
            𝓢 ⊢! p p q
            theorem LO.System.efq_of_neg! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! p) :
            𝓢 ⊢! p q
            theorem LO.System.efq_of_neg₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! p) :
            𝓢 ⊢! p q
            def LO.System.neg_mdp {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (hnp : 𝓢 p) (hn : 𝓢 p) :
            𝓢
            Equations
            Instances For
              theorem LO.System.neg_mdp! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (hnp : 𝓢 ⊢! p) (hn : 𝓢 ⊢! p) :
              𝓢 ⊢!
              def LO.System.dneOr {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 p q) :
              𝓢 p q
              Equations
              Instances For
                theorem LO.System.imply_left_or'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p r) :
                𝓢 ⊢! p r q
                theorem LO.System.imply_right_or'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! q r) :
                𝓢 ⊢! q p r
                def LO.System.implyRightAnd {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hq : 𝓢 p q) (hr : 𝓢 p r) :
                𝓢 p q r
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem LO.System.imply_right_and! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hq : 𝓢 ⊢! p q) (hr : 𝓢 ⊢! p r) :
                  𝓢 ⊢! p q r
                  theorem LO.System.imply_left_and_comm'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (d : 𝓢 ⊢! p q r) :
                  𝓢 ⊢! q p r
                  theorem LO.System.dhyp_and_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p r) :
                  𝓢 ⊢! q p r
                  theorem LO.System.dhyp_and_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p r) :
                  𝓢 ⊢! p q r
                  theorem LO.System.cut! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {c : F} {q₁ : F} {p₂ : F} {q₂ : F} (d₁ : 𝓢 ⊢! p₁ c q₁) (d₂ : 𝓢 ⊢! p₂ c q₂) :
                  𝓢 ⊢! p₁ p₂ q₁ q₂
                  @[simp]
                  theorem LO.System.imply_left_verum {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} :
                  𝓢 ⊢! p
                  def LO.System.orComm {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
                  𝓢 p q q p
                  Equations
                  Instances For
                    theorem LO.System.or_comm! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
                    𝓢 ⊢! p q q p
                    def LO.System.orComm' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} (h : 𝓢 p q) :
                    𝓢 q p
                    Equations
                    Instances For
                      theorem LO.System.or_comm'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} (h : 𝓢 ⊢! p q) :
                      𝓢 ⊢! q p
                      theorem LO.System.or_assoc'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} :
                      𝓢 ⊢! p q r 𝓢 ⊢! (p q) r
                      theorem LO.System.and_assoc! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} :
                      𝓢 ⊢! (p q) r p q r
                      def LO.System.andReplaceLeft' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 p q) (h : 𝓢 p r) :
                      𝓢 r q
                      Equations
                      Instances For
                        theorem LO.System.and_replace_left'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 ⊢! p q) (h : 𝓢 ⊢! p r) :
                        𝓢 ⊢! r q
                        def LO.System.andReplaceLeft {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 p r) :
                        𝓢 p q r q
                        Equations
                        Instances For
                          theorem LO.System.and_replace_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p r) :
                          𝓢 ⊢! p q r q
                          def LO.System.andReplaceRight' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 p q) (h : 𝓢 q r) :
                          𝓢 p r
                          Equations
                          Instances For
                            theorem LO.System.andReplaceRight'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 ⊢! p q) (h : 𝓢 ⊢! q r) :
                            𝓢 ⊢! p r
                            def LO.System.andReplaceRight {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 q r) :
                            𝓢 p q p r
                            Equations
                            Instances For
                              theorem LO.System.and_replace_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! q r) :
                              𝓢 ⊢! p q p r
                              def LO.System.andReplace' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} {s : F} (hc : 𝓢 p q) (h₁ : 𝓢 p r) (h₂ : 𝓢 q s) :
                              𝓢 r s
                              Equations
                              Instances For
                                theorem LO.System.and_replace'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} {s : F} (hc : 𝓢 ⊢! p q) (h₁ : 𝓢 ⊢! p r) (h₂ : 𝓢 ⊢! q s) :
                                𝓢 ⊢! r s
                                def LO.System.andReplace {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} {s : F} (h₁ : 𝓢 p r) (h₂ : 𝓢 q s) :
                                𝓢 p q r s
                                Equations
                                Instances For
                                  theorem LO.System.and_replace! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} {s : F} (h₁ : 𝓢 ⊢! p r) (h₂ : 𝓢 ⊢! q s) :
                                  𝓢 ⊢! p q r s
                                  def LO.System.orReplaceLeft' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 p q) (hp : 𝓢 p r) :
                                  𝓢 r q
                                  Equations
                                  Instances For
                                    theorem LO.System.or_replace_left'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 ⊢! p q) (hp : 𝓢 ⊢! p r) :
                                    𝓢 ⊢! r q
                                    def LO.System.orReplaceLeft {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hp : 𝓢 p r) :
                                    𝓢 p q r q
                                    Equations
                                    Instances For
                                      theorem LO.System.or_replace_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hp : 𝓢 ⊢! p r) :
                                      𝓢 ⊢! p q r q
                                      def LO.System.orReplaceRight' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 p q) (hq : 𝓢 q r) :
                                      𝓢 p r
                                      Equations
                                      Instances For
                                        theorem LO.System.or_replace_right'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hc : 𝓢 ⊢! p q) (hq : 𝓢 ⊢! q r) :
                                        𝓢 ⊢! p r
                                        def LO.System.orReplaceRight {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hq : 𝓢 q r) :
                                        𝓢 p q p r
                                        Equations
                                        Instances For
                                          theorem LO.System.or_replace_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (hq : 𝓢 ⊢! q r) :
                                          𝓢 ⊢! p q p r
                                          def LO.System.orReplace' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {q₁ : F} {p₂ : F} {q₂ : F} (h : 𝓢 p₁ q₁) (hp : 𝓢 p₁ p₂) (hq : 𝓢 q₁ q₂) :
                                          𝓢 p₂ q₂
                                          Equations
                                          Instances For
                                            theorem LO.System.or_replace'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {q₁ : F} {p₂ : F} {q₂ : F} (h : 𝓢 ⊢! p₁ q₁) (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                            𝓢 ⊢! p₂ q₂
                                            def LO.System.orReplace {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 p₁ p₂) (hq : 𝓢 q₁ q₂) :
                                            𝓢 p₁ q₁ p₂ q₂
                                            Equations
                                            Instances For
                                              theorem LO.System.or_replace! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                              𝓢 ⊢! p₁ q₁ p₂ q₂
                                              def LO.System.orReplaceIff {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 p₁ p₂) (hq : 𝓢 q₁ q₂) :
                                              𝓢 p₁ q₁ p₂ q₂
                                              Equations
                                              Instances For
                                                theorem LO.System.or_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                                𝓢 ⊢! p₁ q₁ p₂ q₂
                                                theorem LO.System.or_assoc! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} :
                                                𝓢 ⊢! p q r (p q) r
                                                theorem LO.System.or_replace_right_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (d : 𝓢 ⊢! q r) :
                                                𝓢 ⊢! p q p r
                                                theorem LO.System.or_replace_left_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (d : 𝓢 ⊢! p r) :
                                                𝓢 ⊢! p q r q
                                                def LO.System.andReplaceIff {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 p₁ p₂) (hq : 𝓢 q₁ q₂) :
                                                𝓢 p₁ q₁ p₂ q₂
                                                Equations
                                                Instances For
                                                  theorem LO.System.and_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                                  𝓢 ⊢! p₁ q₁ p₂ q₂
                                                  def LO.System.impReplaceIff {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 p₁ p₂) (hq : 𝓢 q₁ q₂) :
                                                  𝓢 (p₁ q₁) (p₂ q₂)
                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem LO.System.imp_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                                    𝓢 ⊢! (p₁ q₁) (p₂ q₂)
                                                    theorem LO.System.imp_replace_iff!' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p₁ : F} {p₂ : F} {q₁ : F} {q₂ : F} (hp : 𝓢 ⊢! p₁ p₂) (hq : 𝓢 ⊢! q₁ q₂) :
                                                    𝓢 ⊢! p₁ q₁ 𝓢 ⊢! p₂ q₂
                                                    @[simp]
                                                    theorem LO.System.dni! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                    𝓢 ⊢! p p
                                                    def LO.System.dni' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 p) :
                                                    𝓢 p
                                                    Equations
                                                    Instances For
                                                      theorem LO.System.dni'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p) :
                                                      𝓢 ⊢! p
                                                      def LO.System.dniOr' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 p q) :
                                                      Equations
                                                      Instances For
                                                        theorem LO.System.dni_or'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 ⊢! p q) :
                                                        def LO.System.dniAnd' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 p q) :
                                                        Equations
                                                        Instances For
                                                          theorem LO.System.dni_and'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 ⊢! p q) :
                                                          def LO.System.dn {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                          𝓢 p p
                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem LO.System.dn! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                            𝓢 ⊢! p p
                                                            def LO.System.contra₀ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                            𝓢 (p q) q p
                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              def LO.System.contra₀! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                              𝓢 ⊢! (p q) q p
                                                              Equations
                                                              • =
                                                              Instances For
                                                                def LO.System.contra₀' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 p q) :
                                                                𝓢 q p
                                                                Equations
                                                                Instances For
                                                                  theorem LO.System.contra₀'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p q) :
                                                                  𝓢 ⊢! q p
                                                                  def LO.System.contra₀x2' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 p q) :
                                                                  Equations
                                                                  Instances For
                                                                    theorem LO.System.contra₀x2'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p q) :
                                                                    def LO.System.contra₀x2 {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                    𝓢 (p q) p q
                                                                    Equations
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem LO.System.contra₀x2! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                      𝓢 ⊢! (p q) p q
                                                                      def LO.System.contra₁' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 p q) :
                                                                      𝓢 q p
                                                                      Equations
                                                                      Instances For
                                                                        theorem LO.System.contra₁'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p q) :
                                                                        𝓢 ⊢! q p
                                                                        def LO.System.contra₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                        𝓢 (p q) q p
                                                                        Equations
                                                                        Instances For
                                                                          theorem LO.System.contra₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                          𝓢 ⊢! (p q) q p
                                                                          def LO.System.contra₂' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 p q) :
                                                                          𝓢 q p
                                                                          Equations
                                                                          Instances For
                                                                            theorem LO.System.contra₂'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! p q) :
                                                                            𝓢 ⊢! q p
                                                                            def LO.System.contra₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                            𝓢 (p q) q p
                                                                            Equations
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem LO.System.contra₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                              𝓢 ⊢! (p q) q p
                                                                              def LO.System.contra₃' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 p q) :
                                                                              𝓢 q p
                                                                              Equations
                                                                              Instances For
                                                                                theorem LO.System.contra₃'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! p q) :
                                                                                𝓢 ⊢! q p
                                                                                def LO.System.contra₃ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                𝓢 (p q) q p
                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem LO.System.contra₃! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                  𝓢 ⊢! (p q) q p
                                                                                  theorem LO.System.neg_replace_iff'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p q) :
                                                                                  𝓢 ⊢! p q
                                                                                  theorem LO.System.iff_neg_left_to_right'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (h : 𝓢 ⊢! p q) :
                                                                                  𝓢 ⊢! p q
                                                                                  theorem LO.System.iff_neg_right_to_left'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (h : 𝓢 ⊢! p q) :
                                                                                  𝓢 ⊢! p q
                                                                                  def LO.System.negneg_equiv {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                  𝓢 p ((p ) )
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem LO.System.negneg_equiv! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                    𝓢 ⊢! p ((p ) )
                                                                                    def LO.System.negneg_equiv_dne {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                    𝓢 p ((p ) )
                                                                                    Equations
                                                                                    Instances For
                                                                                      theorem LO.System.negneg_equiv_dne! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                      𝓢 ⊢! p ((p ) )
                                                                                      def LO.System.elim_contra_neg {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomElimContra 𝓢] :
                                                                                      𝓢 ((q ) p ) p q
                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        theorem LO.System.elim_contra_neg! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomElimContra 𝓢] :
                                                                                        𝓢 ⊢! ((q ) p ) p q
                                                                                        def LO.System.tne {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                        Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem LO.System.tne! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                          def LO.System.tne' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 p) :
                                                                                          𝓢 p
                                                                                          Equations
                                                                                          Instances For
                                                                                            theorem LO.System.tne'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! p) :
                                                                                            𝓢 ⊢! p
                                                                                            def LO.System.implyLeftReplace {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 q p) :
                                                                                            𝓢 (p r) q r
                                                                                            Equations
                                                                                            Instances For
                                                                                              theorem LO.System.replace_imply_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! q p) :
                                                                                              𝓢 ⊢! (p r) q r
                                                                                              theorem LO.System.replace_imply_left_by_iff'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p q) :
                                                                                              𝓢 ⊢! p r 𝓢 ⊢! q r
                                                                                              theorem LO.System.replace_imply_right_by_iff'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p q) :
                                                                                              𝓢 ⊢! r p 𝓢 ⊢! r q
                                                                                              theorem LO.System.imp_swap'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p q r) :
                                                                                              𝓢 ⊢! q p r
                                                                                              def LO.System.impSwap {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} :
                                                                                              𝓢 (p q r) q p r
                                                                                              Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem LO.System.imp_swap! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} :
                                                                                                𝓢 ⊢! (p q r) q p r
                                                                                                def LO.System.ppq {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} (h : 𝓢 p p q) :
                                                                                                𝓢 p q
                                                                                                Equations
                                                                                                Instances For
                                                                                                  theorem LO.System.ppq! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} (h : 𝓢 ⊢! p p q) :
                                                                                                  𝓢 ⊢! p q
                                                                                                  def LO.System.p_pq_q {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
                                                                                                  𝓢 p (p q) q
                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    theorem LO.System.p_pq_q! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} :
                                                                                                    𝓢 ⊢! p (p q) q
                                                                                                    def LO.System.dhyp_imp' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 p q) :
                                                                                                    𝓢 (r p) r q
                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      theorem LO.System.dhyp_imp'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! p q) :
                                                                                                      𝓢 ⊢! (r p) r q
                                                                                                      def LO.System.rev_dhyp_imp' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 q p) :
                                                                                                      𝓢 (p r) q r
                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        theorem LO.System.rev_dhyp_imp'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {r : F} (h : 𝓢 ⊢! q p) :
                                                                                                        𝓢 ⊢! (p r) q r
                                                                                                        noncomputable def LO.System.dnDistributeImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                        Equations
                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                        Instances For
                                                                                                          @[simp]
                                                                                                          theorem LO.System.dn_distribute_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                          noncomputable def LO.System.dnDistributeImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 (p q)) :
                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            theorem LO.System.dn_distribute_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! (p q)) :
                                                                                                            theorem LO.System.intro_falsum_of_and'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (h : 𝓢 ⊢! p p) :
                                                                                                            𝓢 ⊢!
                                                                                                            theorem LO.System.lac'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] (h : 𝓢 ⊢! p p) :
                                                                                                            𝓢 ⊢!

                                                                                                            Law of contradiction

                                                                                                            def LO.System.introFalsumOfAnd {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                            𝓢 p p
                                                                                                            Equations
                                                                                                            Instances For
                                                                                                              @[simp]
                                                                                                              theorem LO.System.intro_bot_of_and! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                              𝓢 ⊢! p p
                                                                                                              theorem LO.System.lac! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                              𝓢 ⊢! p p

                                                                                                              Law of contradiction

                                                                                                              def LO.System.implyOfNotOr {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                              𝓢 p q p q
                                                                                                              Equations
                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem LO.System.imply_of_not_or! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                𝓢 ⊢! p q p q
                                                                                                                def LO.System.implyOfNotOr' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 p q) :
                                                                                                                𝓢 p q
                                                                                                                Equations
                                                                                                                Instances For
                                                                                                                  theorem LO.System.imply_of_not_or'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! p q) :
                                                                                                                  𝓢 ⊢! p q
                                                                                                                  def LO.System.demorgan₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                  𝓢 p q (p q)
                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem LO.System.demorgan₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                    𝓢 ⊢! p q (p q)
                                                                                                                    def LO.System.demorgan₁' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 p q) :
                                                                                                                    𝓢 (p q)
                                                                                                                    Equations
                                                                                                                    Instances For
                                                                                                                      theorem LO.System.demorgan₁'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 ⊢! p q) :
                                                                                                                      𝓢 ⊢! (p q)
                                                                                                                      def LO.System.demorgan₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                      𝓢 p q (p q)
                                                                                                                      Equations
                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                      Instances For
                                                                                                                        @[simp]
                                                                                                                        theorem LO.System.demorgan₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                        𝓢 ⊢! p q (p q)
                                                                                                                        def LO.System.demorgan₂' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 p q) :
                                                                                                                        𝓢 (p q)
                                                                                                                        Equations
                                                                                                                        Instances For
                                                                                                                          theorem LO.System.demorgan₂'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (d : 𝓢 ⊢! p q) :
                                                                                                                          𝓢 ⊢! (p q)
                                                                                                                          def LO.System.demorgan₃ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                          𝓢 (p q) p q
                                                                                                                          Equations
                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                          Instances For
                                                                                                                            @[simp]
                                                                                                                            theorem LO.System.demorgan₃! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] :
                                                                                                                            𝓢 ⊢! (p q) p q
                                                                                                                            def LO.System.demorgan₃' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 (p q)) :
                                                                                                                            𝓢 p q
                                                                                                                            Equations
                                                                                                                            Instances For
                                                                                                                              theorem LO.System.demorgan₃'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] (b : 𝓢 ⊢! (p q)) :
                                                                                                                              𝓢 ⊢! p q
                                                                                                                              noncomputable def LO.System.demorgan₄ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                              𝓢 (p q) p q
                                                                                                                              Equations
                                                                                                                              Instances For
                                                                                                                                @[simp]
                                                                                                                                theorem LO.System.demorgan₄! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                𝓢 ⊢! (p q) p q
                                                                                                                                noncomputable def LO.System.demorgan₄' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 (p q)) :
                                                                                                                                𝓢 p q
                                                                                                                                Equations
                                                                                                                                Instances For
                                                                                                                                  theorem LO.System.demorgan₄'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! (p q)) :
                                                                                                                                  𝓢 ⊢! p q
                                                                                                                                  noncomputable def LO.System.NotOrOfImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 p q) :
                                                                                                                                  𝓢 p q
                                                                                                                                  Equations
                                                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                                                  Instances For
                                                                                                                                    theorem LO.System.not_or_of_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 ⊢! p q) :
                                                                                                                                    𝓢 ⊢! p q
                                                                                                                                    noncomputable def LO.System.NotOrOfImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                    𝓢 (p q) p q
                                                                                                                                    Equations
                                                                                                                                    Instances For
                                                                                                                                      theorem LO.System.not_or_of_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                      𝓢 ⊢! (p q) p q
                                                                                                                                      noncomputable def LO.System.dnCollectImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                      𝓢 (p q) (p q)
                                                                                                                                      Equations
                                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                                      Instances For
                                                                                                                                        @[simp]
                                                                                                                                        theorem LO.System.dn_collect_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                        noncomputable def LO.System.dnCollectImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 p q) :
                                                                                                                                        𝓢 (p q)
                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          theorem LO.System.dn_collect_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! p q) :
                                                                                                                                          𝓢 ⊢! (p q)
                                                                                                                                          def LO.System.andImplyAndOfImply {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {p' : F} {q' : F} (bp : 𝓢 p p') (bq : 𝓢 q q') :
                                                                                                                                          𝓢 p q p' q'
                                                                                                                                          Equations
                                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                                          Instances For
                                                                                                                                            def LO.System.andIffAndOfIff {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {p' : F} {q' : F} (bp : 𝓢 p p') (bq : 𝓢 q q') :
                                                                                                                                            𝓢 p q p' q'
                                                                                                                                            Equations
                                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                                            Instances For
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Equations
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Equations
                                                                                                                                              • LO.System.instHasAxiomWeakLEMOfHasAxiomLEM = { wlem := fun (p : F) => LO.System.lem }
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              noncomputable def LO.System.implyIffNotOr {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                              𝓢 (p q) p q
                                                                                                                                              Equations
                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                              Instances For
                                                                                                                                                noncomputable def LO.System.imply_iff_not_or! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                                𝓢 ⊢! (p q) p q
                                                                                                                                                Equations
                                                                                                                                                • =
                                                                                                                                                Instances For
                                                                                                                                                  def LO.System.conjIffConj {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] (Γ : List F) :
                                                                                                                                                  𝓢 Γ Γ.conj
                                                                                                                                                  Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem LO.System.conjIffConj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} :
                                                                                                                                                    𝓢 ⊢! Γ Γ.conj
                                                                                                                                                    theorem LO.System.implyLeft_conj_eq_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} :
                                                                                                                                                    𝓢 ⊢! Γ.conj p 𝓢 ⊢! Γ p
                                                                                                                                                    theorem LO.System.generalConj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} (h : p Γ) :
                                                                                                                                                    𝓢 ⊢! Γ p
                                                                                                                                                    theorem LO.System.generalConj'₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} (h : p Γ) (d : 𝓢 ⊢! Γ) :
                                                                                                                                                    𝓢 ⊢! p
                                                                                                                                                    theorem LO.System.iff_provable_list_conj {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} :
                                                                                                                                                    𝓢 ⊢! Γ pΓ, 𝓢 ⊢! p
                                                                                                                                                    theorem LO.System.conjconj_subset! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} (h : pΓ, p Δ) :
                                                                                                                                                    𝓢 ⊢! Δ Γ
                                                                                                                                                    theorem LO.System.conjconj_provable! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} (h : pΓ, Δ ⊢[𝓢]! p) :
                                                                                                                                                    𝓢 ⊢! Δ Γ
                                                                                                                                                    theorem LO.System.conjconj_provable₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} (h : pΓ, Δ ⊢[𝓢]! p) :
                                                                                                                                                    Δ ⊢[𝓢]! Γ
                                                                                                                                                    theorem LO.System.id_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} (he : gΓ, g = p) :
                                                                                                                                                    𝓢 ⊢! p Γ
                                                                                                                                                    theorem LO.System.replace_imply_left_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} (he : gΓ, g = p) (hd : 𝓢 ⊢! Γ q) :
                                                                                                                                                    𝓢 ⊢! p q
                                                                                                                                                    theorem LO.System.iff_imply_left_cons_conj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} :
                                                                                                                                                    𝓢 ⊢! (p :: Γ) q 𝓢 ⊢! p Γ q
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem LO.System.imply_left_concat_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem LO.System.forthback_conj_remove! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} :
                                                                                                                                                    𝓢 ⊢! List.remove p Γ p Γ
                                                                                                                                                    theorem LO.System.imply_left_remove_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} (b : 𝓢 ⊢! Γ q) :
                                                                                                                                                    𝓢 ⊢! List.remove p Γ p q
                                                                                                                                                    theorem LO.System.iff_concat_conj'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem LO.System.iff_concat_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                    theorem LO.System.imply_left_conj_concat! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} {Δ : List F} :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) p 𝓢 ⊢! Γ Δ p
                                                                                                                                                    theorem LO.System.iff_concact_disj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                    theorem LO.System.iff_concact_disj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} {Δ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                    𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
                                                                                                                                                    theorem LO.System.implyRight_cons_disj! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {q : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                    𝓢 ⊢! p (q :: Γ) 𝓢 ⊢! p q Γ
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem LO.System.forthback_disj_remove {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                    𝓢 ⊢! Γ p List.remove p Γ
                                                                                                                                                    theorem LO.System.disj_allsame! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (hd : qΓ, q = p) :
                                                                                                                                                    𝓢 ⊢! Γ p
                                                                                                                                                    theorem LO.System.disj_allsame'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {p : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (hd : qΓ, q = p) (h : 𝓢 ⊢! Γ) :
                                                                                                                                                    𝓢 ⊢! p