Documentation

Foundation.Logic.HilbertStyle.Supplemental

def LO.System.mdp_in {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 φ (φ ψ) ψ
Equations
theorem LO.System.mdp_in! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! φ (φ ψ) ψ
def LO.System.bot_of_mem_either {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} (h₁ : φ Γ) (h₂ : φ Γ) :
Γ ⊢[𝓢]
Equations
@[simp]
theorem LO.System.bot_of_mem_either! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} (h₁ : φ Γ) (h₂ : φ Γ) :
Γ ⊢[𝓢]!
def LO.System.efq_of_mem_either {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [HasAxiomEFQ 𝓢] (h₁ : φ Γ) (h₂ : φ Γ) :
Γ ⊢[𝓢] ψ
Equations
@[simp]
theorem LO.System.efq_of_mem_either! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [HasAxiomEFQ 𝓢] (h₁ : φ Γ) (h₂ : φ Γ) :
Γ ⊢[𝓢]! ψ
@[simp]
theorem LO.System.efq_imply_not₁! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! φ φ ψ
@[simp]
theorem LO.System.efq_imply_not₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! φ φ ψ
theorem LO.System.efq_of_neg! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ ψ
theorem LO.System.efq_of_neg₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! φ) :
𝓢 ⊢! φ ψ
def LO.System.neg_mdp {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (hnp : 𝓢 φ) (hn : 𝓢 φ) :
𝓢
Equations
theorem LO.System.neg_mdp! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (hnp : 𝓢 ⊢! φ) (hn : 𝓢 ⊢! φ) :
𝓢 ⊢!
theorem LO.System.dne_or! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (d : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.imply_left_or'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ χ ψ
theorem LO.System.imply_right_or'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! ψ φ χ
def LO.System.implyRightAnd {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 φ ψ) (hr : 𝓢 φ χ) :
𝓢 φ ψ χ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.imply_right_and! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 ⊢! φ ψ) (hr : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ ψ χ
theorem LO.System.imply_left_and_comm'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! φ ψ χ) :
𝓢 ⊢! ψ φ χ
theorem LO.System.dhyp_and_left! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
𝓢 ⊢! ψ φ χ
theorem LO.System.dhyp_and_right! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ ψ χ
theorem LO.System.cut! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ c ψ₁ φ₂ ψ₂ : F} (d₁ : 𝓢 ⊢! φ₁ c ψ₁) (d₂ : 𝓢 ⊢! φ₂ c ψ₂) :
𝓢 ⊢! φ₁ φ₂ ψ₁ ψ₂
theorem LO.System.or_comm! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! φ ψ ψ φ
def LO.System.orComm' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 φ ψ) :
𝓢 ψ φ
Equations
theorem LO.System.or_comm'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! ψ φ
theorem LO.System.or_assoc'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} :
𝓢 ⊢! φ ψ χ 𝓢 ⊢! (φ ψ) χ
theorem LO.System.and_assoc! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} :
𝓢 ⊢! (φ ψ) χ φ ψ χ
def LO.System.andReplaceLeft' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (h : 𝓢 φ χ) :
𝓢 χ ψ
Equations
theorem LO.System.and_replace_left'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (h : 𝓢 ⊢! φ χ) :
𝓢 ⊢! χ ψ
theorem LO.System.and_replace_left! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ ψ χ ψ
def LO.System.andReplaceRight' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (h : 𝓢 ψ χ) :
𝓢 φ χ
Equations
theorem LO.System.andReplaceRight'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (h : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! φ χ
theorem LO.System.and_replace_right! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! φ ψ φ χ
def LO.System.andReplace' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ s : F} (hc : 𝓢 φ ψ) (h₁ : 𝓢 φ χ) (h₂ : 𝓢 ψ s) :
𝓢 χ s
Equations
theorem LO.System.and_replace'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ s : F} (hc : 𝓢 ⊢! φ ψ) (h₁ : 𝓢 ⊢! φ χ) (h₂ : 𝓢 ⊢! ψ s) :
𝓢 ⊢! χ s
def LO.System.andReplace {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ s : F} (h₁ : 𝓢 φ χ) (h₂ : 𝓢 ψ s) :
𝓢 φ ψ χ s
Equations
theorem LO.System.and_replace! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ s : F} (h₁ : 𝓢 ⊢! φ χ) (h₂ : 𝓢 ⊢! ψ s) :
𝓢 ⊢! φ ψ χ s
def LO.System.orReplaceLeft' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (hp : 𝓢 φ χ) :
𝓢 χ ψ
Equations
theorem LO.System.or_replace_left'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (hp : 𝓢 ⊢! φ χ) :
𝓢 ⊢! χ ψ
theorem LO.System.or_replace_left! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hp : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ ψ χ ψ
def LO.System.orReplaceRight' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (hq : 𝓢 ψ χ) :
𝓢 φ χ
Equations
theorem LO.System.or_replace_right'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (hq : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! φ χ
theorem LO.System.or_replace_right! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! φ ψ φ χ
def LO.System.orReplace' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ ψ₁ φ₂ ψ₂ : F} (h : 𝓢 φ₁ ψ₁) (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
𝓢 φ₂ ψ₂
Equations
theorem LO.System.or_replace'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ ψ₁ φ₂ ψ₂ : F} (h : 𝓢 ⊢! φ₁ ψ₁) (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! φ₂ ψ₂
def LO.System.orReplace {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
𝓢 φ₁ ψ₁ φ₂ ψ₂
Equations
theorem LO.System.or_replace! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
def LO.System.orReplaceIff {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
𝓢 φ₁ ψ₁ φ₂ ψ₂
Equations
theorem LO.System.or_replace_iff! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
theorem LO.System.or_assoc! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} :
𝓢 ⊢! φ ψ χ (φ ψ) χ
theorem LO.System.or_replace_right_iff! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! ψ χ) :
𝓢 ⊢! φ ψ φ χ
theorem LO.System.or_replace_left_iff! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! φ χ) :
𝓢 ⊢! φ ψ χ ψ
def LO.System.andReplaceIff {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
𝓢 φ₁ ψ₁ φ₂ ψ₂
Equations
theorem LO.System.and_replace_iff! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
def LO.System.impReplaceIff {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
𝓢 (φ₁ ψ₁) (φ₂ ψ₂)
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.imp_replace_iff! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! (φ₁ ψ₁) (φ₂ ψ₂)
theorem LO.System.imp_replace_iff!' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
𝓢 ⊢! φ₁ ψ₁ 𝓢 ⊢! φ₂ ψ₂
@[simp]
theorem LO.System.dni! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} :
𝓢 ⊢! φ φ
def LO.System.dni' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
𝓢 φ
Equations
theorem LO.System.dni'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (b : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
theorem LO.System.dni_or'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
def LO.System.dniAnd' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
𝓢 φ ψ
Equations
theorem LO.System.dni_and'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
def LO.System.falsumDNE {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] :
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.dn {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} [HasAxiomDNE 𝓢] :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.dn! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! φ φ
def LO.System.contra₀ {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 (φ ψ) ψ φ
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
def LO.System.contra₀! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) ψ φ
Equations
  • =
def LO.System.contra₀' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
𝓢 ψ φ
Equations
theorem LO.System.contra₀'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! ψ φ
def LO.System.contra₀x2' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
𝓢 φ ψ
Equations
theorem LO.System.contra₀x2'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
@[simp]
theorem LO.System.contra₀x2! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) φ ψ
def LO.System.contra₁' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
𝓢 ψ φ
Equations
theorem LO.System.contra₁'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! ψ φ
theorem LO.System.contra₁! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) ψ φ
def LO.System.contra₂' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 φ ψ) :
𝓢 ψ φ
Equations
theorem LO.System.contra₂'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! ψ φ
@[simp]
theorem LO.System.contra₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! (φ ψ) ψ φ
def LO.System.contra₃' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 φ ψ) :
𝓢 ψ φ
Equations
theorem LO.System.contra₃'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! ψ φ
@[simp]
theorem LO.System.contra₃! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! (φ ψ) ψ φ
theorem LO.System.neg_replace_iff'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.iff_neg_left_to_right'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.iff_neg_right_to_left'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
def LO.System.negneg_equiv {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} [NegationEquiv 𝓢] :
𝓢 φ ((φ ) )
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.negneg_equiv! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} [NegationEquiv 𝓢] :
𝓢 ⊢! φ ((φ ) )
theorem LO.System.negneg_equiv_dne! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} [NegationEquiv 𝓢] [HasAxiomDNE 𝓢] :
𝓢 ⊢! φ ((φ ) )
def LO.System.elim_contra_neg {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomElimContra 𝓢] :
𝓢 ((ψ ) φ ) φ ψ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.elim_contra_neg! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomElimContra 𝓢] :
𝓢 ⊢! ((ψ ) φ ) φ ψ
def LO.System.tne {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} :
𝓢 φ φ
Equations
@[simp]
theorem LO.System.tne! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} :
def LO.System.tne' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
𝓢 φ
Equations
theorem LO.System.tne'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (b : 𝓢 ⊢! φ) :
𝓢 ⊢! φ
theorem LO.System.replace_imply_left! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ φ) :
𝓢 ⊢! (φ χ) ψ χ
theorem LO.System.replace_imply_left_by_iff'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ χ 𝓢 ⊢! ψ χ
theorem LO.System.replace_imply_right_by_iff'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! χ φ 𝓢 ⊢! χ ψ
theorem LO.System.imp_swap'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ χ) :
𝓢 ⊢! ψ φ χ
@[simp]
theorem LO.System.imp_swap! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} :
𝓢 ⊢! (φ ψ χ) ψ φ χ
def LO.System.ppq {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 φ φ ψ) :
𝓢 φ ψ
Equations
theorem LO.System.ppq! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ φ ψ) :
𝓢 ⊢! φ ψ
def LO.System.p_pq_q {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 φ (φ ψ) ψ
Equations
theorem LO.System.p_pq_q! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! φ (φ ψ) ψ
def LO.System.dhyp_imp' {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 φ ψ) :
𝓢 (χ φ) χ ψ
Equations
theorem LO.System.dhyp_imp'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! (χ φ) χ ψ
def LO.System.rev_dhyp_imp' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ψ φ) :
𝓢 (φ χ) ψ χ
Equations
theorem LO.System.rev_dhyp_imp'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ φ) :
𝓢 ⊢! (φ χ) ψ χ
noncomputable def LO.System.dnDistributeImply {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 (φ ψ) φ ψ
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.dn_distribute_imply! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) φ ψ
noncomputable def LO.System.dnDistributeImply' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 (φ ψ)) :
𝓢 φ ψ
Equations
theorem LO.System.dn_distribute_imply'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! (φ ψ)) :
theorem LO.System.intro_falsum_of_and'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ φ) :
𝓢 ⊢!
theorem LO.System.lac'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ φ) :
𝓢 ⊢!

Law of contradiction

@[simp]
theorem LO.System.intro_bot_of_and! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} :
𝓢 ⊢! φ φ
theorem LO.System.lac! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} :
𝓢 ⊢! φ φ

Law of contradiction

def LO.System.implyOfNotOr {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 φ ψ φ ψ
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.imply_of_not_or! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! φ ψ φ ψ
def LO.System.implyOfNotOr' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (b : 𝓢 φ ψ) :
𝓢 φ ψ
Equations
theorem LO.System.imply_of_not_or'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
@[simp]
theorem LO.System.demorgan₁! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! φ ψ (φ ψ)
def LO.System.demorgan₁' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
𝓢 (φ ψ)
Equations
theorem LO.System.demorgan₁'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! (φ ψ)
def LO.System.demorgan₂ {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 φ ψ (φ ψ)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.demorgan₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! φ ψ (φ ψ)
def LO.System.demorgan₂' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
𝓢 (φ ψ)
Equations
theorem LO.System.demorgan₂'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! (φ ψ)
def LO.System.demorgan₃ {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 (φ ψ) φ ψ
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.demorgan₃! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} :
𝓢 ⊢! (φ ψ) φ ψ
def LO.System.demorgan₃' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 (φ ψ)) :
𝓢 φ ψ
Equations
theorem LO.System.demorgan₃'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! (φ ψ)) :
𝓢 ⊢! φ ψ
@[simp]
theorem LO.System.demorgan₄! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! (φ ψ) φ ψ
noncomputable def LO.System.demorgan₄' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 (φ ψ)) :
𝓢 φ ψ
Equations
theorem LO.System.demorgan₄'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (b : 𝓢 ⊢! (φ ψ)) :
𝓢 ⊢! φ ψ
noncomputable def LO.System.NotOrOfImply' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (d : 𝓢 φ ψ) :
𝓢 φ ψ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.not_or_of_imply'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] (d : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.not_or_of_imply! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! (φ ψ) φ ψ
noncomputable def LO.System.dnCollectImply {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 (φ ψ) (φ ψ)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.dn_collect_imply! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! (φ ψ) (φ ψ)
noncomputable def LO.System.dnCollectImply' {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (b : 𝓢 φ ψ) :
𝓢 (φ ψ)
Equations
theorem LO.System.dn_collect_imply'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! (φ ψ)
def LO.System.andImplyAndOfImply {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ φ' ψ' : F} (bp : 𝓢 φ φ') (bq : 𝓢 ψ ψ') :
𝓢 φ ψ φ' ψ'
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.andIffAndOfIff {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ φ' ψ' : F} (bp : 𝓢 φ φ') (bq : 𝓢 ψ ψ') :
𝓢 φ ψ φ' ψ'
Equations
  • One or more equations did not get rendered due to their size.
instance LO.System.instHasAxiomEFQOfHasAxiomDNE {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] [HasAxiomDNE 𝓢] :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
instance LO.System.instHasAxiomWeakLEMOfHasAxiomLEM {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [HasAxiomLEM 𝓢] :
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
noncomputable instance LO.System.instHasAxiomPeirceOfHasAxiomDNE {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] [HasAxiomDNE 𝓢] :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.System.implyIffNotOr {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 (φ ψ) φ ψ
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.System.imply_iff_not_or! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} [HasAxiomDNE 𝓢] :
𝓢 ⊢! (φ ψ) φ ψ
Equations
  • =
@[simp]
theorem LO.System.conjIffConj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ : List F} :
𝓢 ⊢! Γ Γ.conj
theorem LO.System.implyLeft_conj_eq_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} :
𝓢 ⊢! Γ.conj φ 𝓢 ⊢! Γ φ
theorem LO.System.generalConj'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} (h : φ Γ) :
𝓢 ⊢! Γ φ
theorem LO.System.generalConj'₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} (h : φ Γ) (d : 𝓢 ⊢! Γ) :
𝓢 ⊢! φ
theorem LO.System.iff_provable_list_conj {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ : List F} :
𝓢 ⊢! Γ φΓ, 𝓢 ⊢! φ
theorem LO.System.conjconj_subset! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, φ Δ) :
𝓢 ⊢! Δ Γ
theorem LO.System.conjconj_provable! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, Δ ⊢[𝓢]! φ) :
𝓢 ⊢! Δ Γ
theorem LO.System.conjconj_provable₂! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, Δ ⊢[𝓢]! φ) :
Δ ⊢[𝓢]! Γ
theorem LO.System.id_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} (he : gΓ, g = φ) :
𝓢 ⊢! φ Γ
theorem LO.System.replace_imply_left_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} (he : gΓ, g = φ) (hd : 𝓢 ⊢! Γ ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.iff_imply_left_cons_conj'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
𝓢 ⊢! (φ :: Γ) ψ 𝓢 ⊢! φ Γ ψ
@[simp]
theorem LO.System.imply_left_concat_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} :
𝓢 ⊢! (Γ ++ Δ) Γ Δ
@[simp]
theorem LO.System.forthback_conj_remove! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} :
𝓢 ⊢! List.remove φ Γ φ Γ
theorem LO.System.imply_left_remove_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} (b : 𝓢 ⊢! Γ ψ) :
𝓢 ⊢! List.remove φ Γ φ ψ
theorem LO.System.iff_concat_conj'! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} :
𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
@[simp]
theorem LO.System.iff_concat_conj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} :
𝓢 ⊢! (Γ ++ Δ) Γ Δ
theorem LO.System.imply_left_conj_concat! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ Δ : List F} :
𝓢 ⊢! (Γ ++ Δ) φ 𝓢 ⊢! Γ Δ φ
theorem LO.System.iff_concact_disj! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! (Γ ++ Δ) Γ Δ
theorem LO.System.iff_concact_disj'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {Γ Δ : List F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
theorem LO.System.implyRight_cons_disj! {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! φ (ψ :: Γ) 𝓢 ⊢! φ ψ Γ
@[simp]
theorem LO.System.forthback_disj_remove {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} [HasAxiomEFQ 𝓢] :
𝓢 ⊢! Γ φ List.remove φ Γ
theorem LO.System.disj_allsame! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} [HasAxiomEFQ 𝓢] (hd : ψΓ, ψ = φ) :
𝓢 ⊢! Γ φ
theorem LO.System.disj_allsame'! {F : Type u_1} [LogicalConnective F] [DecidableEq F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] {φ : F} {Γ : List F} [HasAxiomEFQ 𝓢] (hd : ψΓ, ψ = φ) (h : 𝓢 ⊢! Γ) :
𝓢 ⊢! φ
theorem LO.System.inconsistent_of_provable_of_unprovable {F : Type u_1} [LogicalConnective F] {S : Type u_2} [System F S] {𝓢 : S} [System.Minimal 𝓢] [HasAxiomEFQ 𝓢] {φ : F} (hp : 𝓢 ⊢! φ) (hn : 𝓢 ⊢! φ) :