Documentation

Foundation.Logic.HilbertStyle.Supplemental

def LO.System.mdp_in {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
𝓢 φ (φ ψ) ψ
Equations
Instances For
    theorem LO.System.mdp_in! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
    𝓢 ⊢! φ (φ ψ) ψ
    def LO.System.bot_of_mem_either {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} (h₁ : φ Γ) (h₂ : φ Γ) :
    Γ ⊢[𝓢]
    Equations
    Instances For
      @[simp]
      theorem LO.System.bot_of_mem_either! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} (h₁ : φ Γ) (h₂ : φ Γ) :
      Γ ⊢[𝓢]!
      def LO.System.efq_of_mem_either {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (h₁ : φ Γ) (h₂ : φ Γ) :
      Γ ⊢[𝓢] ψ
      Equations
      Instances For
        @[simp]
        theorem LO.System.efq_of_mem_either! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (h₁ : φ Γ) (h₂ : φ Γ) :
        Γ ⊢[𝓢]! ψ
        def LO.System.efq_imply_not₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
        𝓢 φ φ ψ
        Equations
        Instances For
          @[simp]
          theorem LO.System.efq_imply_not₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
          𝓢 ⊢! φ φ ψ
          def LO.System.efq_imply_not₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
          𝓢 φ φ ψ
          Equations
          Instances For
            @[simp]
            theorem LO.System.efq_imply_not₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
            𝓢 ⊢! φ φ ψ
            theorem LO.System.efq_of_neg! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! φ) :
            𝓢 ⊢! φ ψ
            theorem LO.System.efq_of_neg₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (h : 𝓢 ⊢! φ) :
            𝓢 ⊢! φ ψ
            def LO.System.neg_mdp {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (hnp : 𝓢 φ) (hn : 𝓢 φ) :
            𝓢
            Equations
            Instances For
              theorem LO.System.neg_mdp! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (hnp : 𝓢 ⊢! φ) (hn : 𝓢 ⊢! φ) :
              𝓢 ⊢!
              def LO.System.dneOr {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 φ ψ) :
              𝓢 φ ψ
              Equations
              Instances For
                theorem LO.System.imply_left_or'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
                𝓢 ⊢! φ χ ψ
                theorem LO.System.imply_right_or'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ χ) :
                𝓢 ⊢! ψ φ χ
                def LO.System.implyRightAnd {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 φ ψ) (hr : 𝓢 φ χ) :
                𝓢 φ ψ χ
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem LO.System.imply_right_and! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 ⊢! φ ψ) (hr : 𝓢 ⊢! φ χ) :
                  𝓢 ⊢! φ ψ χ
                  theorem LO.System.imply_left_and_comm'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! φ ψ χ) :
                  𝓢 ⊢! ψ φ χ
                  theorem LO.System.dhyp_and_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
                  𝓢 ⊢! ψ φ χ
                  theorem LO.System.dhyp_and_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
                  𝓢 ⊢! φ ψ χ
                  theorem LO.System.cut! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ c ψ₁ φ₂ ψ₂ : F} (d₁ : 𝓢 ⊢! φ₁ c ψ₁) (d₂ : 𝓢 ⊢! φ₂ c ψ₂) :
                  𝓢 ⊢! φ₁ φ₂ ψ₁ ψ₂
                  def LO.System.orComm {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                  𝓢 φ ψ ψ φ
                  Equations
                  Instances For
                    theorem LO.System.or_comm! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                    𝓢 ⊢! φ ψ ψ φ
                    def LO.System.orComm' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 φ ψ) :
                    𝓢 ψ φ
                    Equations
                    Instances For
                      theorem LO.System.or_comm'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ ψ) :
                      𝓢 ⊢! ψ φ
                      theorem LO.System.or_assoc'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} :
                      𝓢 ⊢! φ ψ χ 𝓢 ⊢! (φ ψ) χ
                      theorem LO.System.and_assoc! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} :
                      𝓢 ⊢! (φ ψ) χ φ ψ χ
                      def LO.System.andReplaceLeft' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (h : 𝓢 φ χ) :
                      𝓢 χ ψ
                      Equations
                      Instances For
                        theorem LO.System.and_replace_left'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (h : 𝓢 ⊢! φ χ) :
                        𝓢 ⊢! χ ψ
                        def LO.System.andReplaceLeft {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 φ χ) :
                        𝓢 φ ψ χ ψ
                        Equations
                        Instances For
                          theorem LO.System.and_replace_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ χ) :
                          𝓢 ⊢! φ ψ χ ψ
                          def LO.System.andReplaceRight' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (h : 𝓢 ψ χ) :
                          𝓢 φ χ
                          Equations
                          Instances For
                            theorem LO.System.andReplaceRight'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (h : 𝓢 ⊢! ψ χ) :
                            𝓢 ⊢! φ χ
                            def LO.System.andReplaceRight {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ψ χ) :
                            𝓢 φ ψ φ χ
                            Equations
                            Instances For
                              theorem LO.System.and_replace_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ χ) :
                              𝓢 ⊢! φ ψ φ χ
                              def LO.System.andReplace' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ s : F} (hc : 𝓢 φ ψ) (h₁ : 𝓢 φ χ) (h₂ : 𝓢 ψ s) :
                              𝓢 χ s
                              Equations
                              Instances For
                                theorem LO.System.and_replace'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ s : F} (hc : 𝓢 ⊢! φ ψ) (h₁ : 𝓢 ⊢! φ χ) (h₂ : 𝓢 ⊢! ψ s) :
                                𝓢 ⊢! χ s
                                def LO.System.andReplace {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ s : F} (h₁ : 𝓢 φ χ) (h₂ : 𝓢 ψ s) :
                                𝓢 φ ψ χ s
                                Equations
                                Instances For
                                  theorem LO.System.and_replace! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ s : F} (h₁ : 𝓢 ⊢! φ χ) (h₂ : 𝓢 ⊢! ψ s) :
                                  𝓢 ⊢! φ ψ χ s
                                  def LO.System.orReplaceLeft' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (hp : 𝓢 φ χ) :
                                  𝓢 χ ψ
                                  Equations
                                  Instances For
                                    theorem LO.System.or_replace_left'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (hp : 𝓢 ⊢! φ χ) :
                                    𝓢 ⊢! χ ψ
                                    def LO.System.orReplaceLeft {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hp : 𝓢 φ χ) :
                                    𝓢 φ ψ χ ψ
                                    Equations
                                    Instances For
                                      theorem LO.System.or_replace_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hp : 𝓢 ⊢! φ χ) :
                                      𝓢 ⊢! φ ψ χ ψ
                                      def LO.System.orReplaceRight' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 φ ψ) (hq : 𝓢 ψ χ) :
                                      𝓢 φ χ
                                      Equations
                                      Instances For
                                        theorem LO.System.or_replace_right'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hc : 𝓢 ⊢! φ ψ) (hq : 𝓢 ⊢! ψ χ) :
                                        𝓢 ⊢! φ χ
                                        def LO.System.orReplaceRight {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 ψ χ) :
                                        𝓢 φ ψ φ χ
                                        Equations
                                        Instances For
                                          theorem LO.System.or_replace_right! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (hq : 𝓢 ⊢! ψ χ) :
                                          𝓢 ⊢! φ ψ φ χ
                                          def LO.System.orReplace' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ ψ₁ φ₂ ψ₂ : F} (h : 𝓢 φ₁ ψ₁) (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
                                          𝓢 φ₂ ψ₂
                                          Equations
                                          Instances For
                                            theorem LO.System.or_replace'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ ψ₁ φ₂ ψ₂ : F} (h : 𝓢 ⊢! φ₁ ψ₁) (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                            𝓢 ⊢! φ₂ ψ₂
                                            def LO.System.orReplace {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
                                            𝓢 φ₁ ψ₁ φ₂ ψ₂
                                            Equations
                                            Instances For
                                              theorem LO.System.or_replace! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                              𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
                                              def LO.System.orReplaceIff {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
                                              𝓢 φ₁ ψ₁ φ₂ ψ₂
                                              Equations
                                              Instances For
                                                theorem LO.System.or_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                                𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
                                                theorem LO.System.or_assoc! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} :
                                                𝓢 ⊢! φ ψ χ (φ ψ) χ
                                                theorem LO.System.or_replace_right_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! ψ χ) :
                                                𝓢 ⊢! φ ψ φ χ
                                                theorem LO.System.or_replace_left_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (d : 𝓢 ⊢! φ χ) :
                                                𝓢 ⊢! φ ψ χ ψ
                                                def LO.System.andReplaceIff {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
                                                𝓢 φ₁ ψ₁ φ₂ ψ₂
                                                Equations
                                                Instances For
                                                  theorem LO.System.and_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                                  𝓢 ⊢! φ₁ ψ₁ φ₂ ψ₂
                                                  def LO.System.impReplaceIff {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 φ₁ φ₂) (hq : 𝓢 ψ₁ ψ₂) :
                                                  𝓢 (φ₁ ψ₁) (φ₂ ψ₂)
                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem LO.System.imp_replace_iff! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                                    𝓢 ⊢! (φ₁ ψ₁) (φ₂ ψ₂)
                                                    theorem LO.System.imp_replace_iff!' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ₁ φ₂ ψ₁ ψ₂ : F} (hp : 𝓢 ⊢! φ₁ φ₂) (hq : 𝓢 ⊢! ψ₁ ψ₂) :
                                                    𝓢 ⊢! φ₁ ψ₁ 𝓢 ⊢! φ₂ ψ₂
                                                    @[simp]
                                                    theorem LO.System.dni! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                    𝓢 ⊢! φ φ
                                                    def LO.System.dni' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
                                                    𝓢 φ
                                                    Equations
                                                    Instances For
                                                      theorem LO.System.dni'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (b : 𝓢 ⊢! φ) :
                                                      𝓢 ⊢! φ
                                                      def LO.System.dniOr' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
                                                      𝓢 φ ψ
                                                      Equations
                                                      Instances For
                                                        theorem LO.System.dni_or'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
                                                        def LO.System.dniAnd' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
                                                        𝓢 φ ψ
                                                        Equations
                                                        Instances For
                                                          theorem LO.System.dni_and'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
                                                          def LO.System.falsumDNE {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] :
                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            def LO.System.falsumDN {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] :
                                                            Equations
                                                            Instances For
                                                              def LO.System.dn {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                              𝓢 φ φ
                                                              Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem LO.System.dn! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                𝓢 ⊢! φ φ
                                                                def LO.System.contra₀ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                𝓢 (φ ψ) ψ φ
                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For
                                                                  @[simp]
                                                                  def LO.System.contra₀! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                  𝓢 ⊢! (φ ψ) ψ φ
                                                                  Equations
                                                                  • =
                                                                  Instances For
                                                                    def LO.System.contra₀' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
                                                                    𝓢 ψ φ
                                                                    Equations
                                                                    Instances For
                                                                      theorem LO.System.contra₀'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
                                                                      𝓢 ⊢! ψ φ
                                                                      def LO.System.contra₀x2' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
                                                                      𝓢 φ ψ
                                                                      Equations
                                                                      Instances For
                                                                        theorem LO.System.contra₀x2'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
                                                                        def LO.System.contra₀x2 {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                        𝓢 (φ ψ) φ ψ
                                                                        Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem LO.System.contra₀x2! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                          𝓢 ⊢! (φ ψ) φ ψ
                                                                          def LO.System.contra₁' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 φ ψ) :
                                                                          𝓢 ψ φ
                                                                          Equations
                                                                          Instances For
                                                                            theorem LO.System.contra₁'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
                                                                            𝓢 ⊢! ψ φ
                                                                            def LO.System.contra₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                            𝓢 (φ ψ) ψ φ
                                                                            Equations
                                                                            Instances For
                                                                              theorem LO.System.contra₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                              𝓢 ⊢! (φ ψ) ψ φ
                                                                              def LO.System.contra₂' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 φ ψ) :
                                                                              𝓢 ψ φ
                                                                              Equations
                                                                              Instances For
                                                                                theorem LO.System.contra₂'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! φ ψ) :
                                                                                𝓢 ⊢! ψ φ
                                                                                def LO.System.contra₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                𝓢 (φ ψ) ψ φ
                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem LO.System.contra₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                  𝓢 ⊢! (φ ψ) ψ φ
                                                                                  def LO.System.contra₃' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 φ ψ) :
                                                                                  𝓢 ψ φ
                                                                                  Equations
                                                                                  Instances For
                                                                                    theorem LO.System.contra₃'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! φ ψ) :
                                                                                    𝓢 ⊢! ψ φ
                                                                                    def LO.System.contra₃ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                    𝓢 (φ ψ) ψ φ
                                                                                    Equations
                                                                                    Instances For
                                                                                      @[simp]
                                                                                      theorem LO.System.contra₃! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                      𝓢 ⊢! (φ ψ) ψ φ
                                                                                      theorem LO.System.neg_replace_iff'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! φ ψ) :
                                                                                      𝓢 ⊢! φ ψ
                                                                                      theorem LO.System.iff_neg_left_to_right'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (h : 𝓢 ⊢! φ ψ) :
                                                                                      𝓢 ⊢! φ ψ
                                                                                      theorem LO.System.iff_neg_right_to_left'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (h : 𝓢 ⊢! φ ψ) :
                                                                                      𝓢 ⊢! φ ψ
                                                                                      def LO.System.negneg_equiv {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.NegationEquiv 𝓢] :
                                                                                      𝓢 φ ((φ ) )
                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem LO.System.negneg_equiv! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.NegationEquiv 𝓢] :
                                                                                        𝓢 ⊢! φ ((φ ) )
                                                                                        def LO.System.negneg_equiv_dne {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                        𝓢 φ ((φ ) )
                                                                                        Equations
                                                                                        Instances For
                                                                                          theorem LO.System.negneg_equiv_dne! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} [LO.System.NegationEquiv 𝓢] [LO.System.HasAxiomDNE 𝓢] :
                                                                                          𝓢 ⊢! φ ((φ ) )
                                                                                          def LO.System.elim_contra_neg {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomElimContra 𝓢] :
                                                                                          𝓢 ((ψ ) φ ) φ ψ
                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For
                                                                                            theorem LO.System.elim_contra_neg! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomElimContra 𝓢] :
                                                                                            𝓢 ⊢! ((ψ ) φ ) φ ψ
                                                                                            def LO.System.tne {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                            𝓢 φ φ
                                                                                            Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem LO.System.tne! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                              def LO.System.tne' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
                                                                                              𝓢 φ
                                                                                              Equations
                                                                                              Instances For
                                                                                                theorem LO.System.tne'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (b : 𝓢 ⊢! φ) :
                                                                                                𝓢 ⊢! φ
                                                                                                def LO.System.tneIff {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                                𝓢 φ φ
                                                                                                Equations
                                                                                                Instances For
                                                                                                  def LO.System.implyLeftReplace {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ψ φ) :
                                                                                                  𝓢 (φ χ) ψ χ
                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    theorem LO.System.replace_imply_left! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ φ) :
                                                                                                    𝓢 ⊢! (φ χ) ψ χ
                                                                                                    theorem LO.System.replace_imply_left_by_iff'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
                                                                                                    𝓢 ⊢! φ χ 𝓢 ⊢! ψ χ
                                                                                                    theorem LO.System.replace_imply_right_by_iff'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
                                                                                                    𝓢 ⊢! χ φ 𝓢 ⊢! χ ψ
                                                                                                    theorem LO.System.imp_swap'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ χ) :
                                                                                                    𝓢 ⊢! ψ φ χ
                                                                                                    def LO.System.impSwap {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} :
                                                                                                    𝓢 (φ ψ χ) ψ φ χ
                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem LO.System.imp_swap! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} :
                                                                                                      𝓢 ⊢! (φ ψ χ) ψ φ χ
                                                                                                      def LO.System.ppq {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 φ φ ψ) :
                                                                                                      𝓢 φ ψ
                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        theorem LO.System.ppq! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ φ ψ) :
                                                                                                        𝓢 ⊢! φ ψ
                                                                                                        def LO.System.p_pq_q {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                        𝓢 φ (φ ψ) ψ
                                                                                                        Equations
                                                                                                        Instances For
                                                                                                          theorem LO.System.p_pq_q! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                          𝓢 ⊢! φ (φ ψ) ψ
                                                                                                          def LO.System.dhyp_imp' {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 φ ψ) :
                                                                                                          𝓢 (χ φ) χ ψ
                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            theorem LO.System.dhyp_imp'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! φ ψ) :
                                                                                                            𝓢 ⊢! (χ φ) χ ψ
                                                                                                            def LO.System.rev_dhyp_imp' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ψ φ) :
                                                                                                            𝓢 (φ χ) ψ χ
                                                                                                            Equations
                                                                                                            Instances For
                                                                                                              theorem LO.System.rev_dhyp_imp'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ χ : F} (h : 𝓢 ⊢! ψ φ) :
                                                                                                              𝓢 ⊢! (φ χ) ψ χ
                                                                                                              noncomputable def LO.System.dnDistributeImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                              𝓢 (φ ψ) φ ψ
                                                                                                              Equations
                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem LO.System.dn_distribute_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                𝓢 ⊢! (φ ψ) φ ψ
                                                                                                                noncomputable def LO.System.dnDistributeImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 (φ ψ)) :
                                                                                                                𝓢 φ ψ
                                                                                                                Equations
                                                                                                                Instances For
                                                                                                                  theorem LO.System.dn_distribute_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! (φ ψ)) :
                                                                                                                  theorem LO.System.intro_falsum_of_and'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ φ) :
                                                                                                                  𝓢 ⊢!
                                                                                                                  theorem LO.System.lac'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} (h : 𝓢 ⊢! φ φ) :
                                                                                                                  𝓢 ⊢!

                                                                                                                  Law of contradiction

                                                                                                                  def LO.System.introFalsumOfAnd {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                                                  𝓢 φ φ
                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem LO.System.intro_bot_of_and! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                                                    𝓢 ⊢! φ φ
                                                                                                                    theorem LO.System.lac! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} :
                                                                                                                    𝓢 ⊢! φ φ

                                                                                                                    Law of contradiction

                                                                                                                    def LO.System.implyOfNotOr {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                    𝓢 φ ψ φ ψ
                                                                                                                    Equations
                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                    Instances For
                                                                                                                      @[simp]
                                                                                                                      theorem LO.System.imply_of_not_or! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                      𝓢 ⊢! φ ψ φ ψ
                                                                                                                      def LO.System.implyOfNotOr' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 φ ψ) :
                                                                                                                      𝓢 φ ψ
                                                                                                                      Equations
                                                                                                                      Instances For
                                                                                                                        theorem LO.System.imply_of_not_or'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! φ ψ) :
                                                                                                                        𝓢 ⊢! φ ψ
                                                                                                                        def LO.System.demorgan₁ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                        𝓢 φ ψ (φ ψ)
                                                                                                                        Equations
                                                                                                                        Instances For
                                                                                                                          @[simp]
                                                                                                                          theorem LO.System.demorgan₁! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                          𝓢 ⊢! φ ψ (φ ψ)
                                                                                                                          def LO.System.demorgan₁' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
                                                                                                                          𝓢 (φ ψ)
                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            theorem LO.System.demorgan₁'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
                                                                                                                            𝓢 ⊢! (φ ψ)
                                                                                                                            def LO.System.demorgan₂ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                            𝓢 φ ψ (φ ψ)
                                                                                                                            Equations
                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                            Instances For
                                                                                                                              @[simp]
                                                                                                                              theorem LO.System.demorgan₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                              𝓢 ⊢! φ ψ (φ ψ)
                                                                                                                              def LO.System.demorgan₂' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 φ ψ) :
                                                                                                                              𝓢 (φ ψ)
                                                                                                                              Equations
                                                                                                                              Instances For
                                                                                                                                theorem LO.System.demorgan₂'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (d : 𝓢 ⊢! φ ψ) :
                                                                                                                                𝓢 ⊢! (φ ψ)
                                                                                                                                def LO.System.demorgan₃ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                                𝓢 (φ ψ) φ ψ
                                                                                                                                Equations
                                                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                                                Instances For
                                                                                                                                  @[simp]
                                                                                                                                  theorem LO.System.demorgan₃! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} :
                                                                                                                                  𝓢 ⊢! (φ ψ) φ ψ
                                                                                                                                  def LO.System.demorgan₃' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 (φ ψ)) :
                                                                                                                                  𝓢 φ ψ
                                                                                                                                  Equations
                                                                                                                                  Instances For
                                                                                                                                    theorem LO.System.demorgan₃'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} (b : 𝓢 ⊢! (φ ψ)) :
                                                                                                                                    𝓢 ⊢! φ ψ
                                                                                                                                    noncomputable def LO.System.demorgan₄ {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                    𝓢 (φ ψ) φ ψ
                                                                                                                                    Equations
                                                                                                                                    Instances For
                                                                                                                                      @[simp]
                                                                                                                                      theorem LO.System.demorgan₄! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                      𝓢 ⊢! (φ ψ) φ ψ
                                                                                                                                      noncomputable def LO.System.demorgan₄' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 (φ ψ)) :
                                                                                                                                      𝓢 φ ψ
                                                                                                                                      Equations
                                                                                                                                      Instances For
                                                                                                                                        theorem LO.System.demorgan₄'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (b : 𝓢 ⊢! (φ ψ)) :
                                                                                                                                        𝓢 ⊢! φ ψ
                                                                                                                                        noncomputable def LO.System.NotOrOfImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 φ ψ) :
                                                                                                                                        𝓢 φ ψ
                                                                                                                                        Equations
                                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                                        Instances For
                                                                                                                                          theorem LO.System.not_or_of_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] (d : 𝓢 ⊢! φ ψ) :
                                                                                                                                          𝓢 ⊢! φ ψ
                                                                                                                                          noncomputable def LO.System.NotOrOfImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                          𝓢 (φ ψ) φ ψ
                                                                                                                                          Equations
                                                                                                                                          Instances For
                                                                                                                                            theorem LO.System.not_or_of_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                            𝓢 ⊢! (φ ψ) φ ψ
                                                                                                                                            noncomputable def LO.System.dnCollectImply {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                            𝓢 (φ ψ) (φ ψ)
                                                                                                                                            Equations
                                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                                            Instances For
                                                                                                                                              @[simp]
                                                                                                                                              theorem LO.System.dn_collect_imply! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                              𝓢 ⊢! (φ ψ) (φ ψ)
                                                                                                                                              noncomputable def LO.System.dnCollectImply' {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 φ ψ) :
                                                                                                                                              𝓢 (φ ψ)
                                                                                                                                              Equations
                                                                                                                                              Instances For
                                                                                                                                                theorem LO.System.dn_collect_imply'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomEFQ 𝓢] (b : 𝓢 ⊢! φ ψ) :
                                                                                                                                                𝓢 ⊢! (φ ψ)
                                                                                                                                                def LO.System.andImplyAndOfImply {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ φ' ψ' : F} (bp : 𝓢 φ φ') (bq : 𝓢 ψ ψ') :
                                                                                                                                                𝓢 φ ψ φ' ψ'
                                                                                                                                                Equations
                                                                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                                                                Instances For
                                                                                                                                                  def LO.System.andIffAndOfIff {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ φ' ψ' : F} (bp : 𝓢 φ φ') (bq : 𝓢 ψ ψ') :
                                                                                                                                                  𝓢 φ ψ φ' ψ'
                                                                                                                                                  Equations
                                                                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                                                                  Instances For
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Equations
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Equations
                                                                                                                                                    • LO.System.instHasAxiomWeakLEMOfHasAxiomLEM = { wlem := fun (φ : F) => LO.System.lem }
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    noncomputable def LO.System.implyIffNotOr {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                                    𝓢 (φ ψ) φ ψ
                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    Instances For
                                                                                                                                                      noncomputable def LO.System.imply_iff_not_or! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} [LO.System.HasAxiomDNE 𝓢] :
                                                                                                                                                      𝓢 ⊢! (φ ψ) φ ψ
                                                                                                                                                      Equations
                                                                                                                                                      • =
                                                                                                                                                      Instances For
                                                                                                                                                        def LO.System.conjIffConj {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] (Γ : List F) :
                                                                                                                                                        𝓢 Γ Γ.conj
                                                                                                                                                        Equations
                                                                                                                                                        Instances For
                                                                                                                                                          @[simp]
                                                                                                                                                          theorem LO.System.conjIffConj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} :
                                                                                                                                                          𝓢 ⊢! Γ Γ.conj
                                                                                                                                                          theorem LO.System.implyLeft_conj_eq_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} :
                                                                                                                                                          𝓢 ⊢! Γ.conj φ 𝓢 ⊢! Γ φ
                                                                                                                                                          theorem LO.System.generalConj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} (h : φ Γ) :
                                                                                                                                                          𝓢 ⊢! Γ φ
                                                                                                                                                          theorem LO.System.generalConj'₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} (h : φ Γ) (d : 𝓢 ⊢! Γ) :
                                                                                                                                                          𝓢 ⊢! φ
                                                                                                                                                          theorem LO.System.iff_provable_list_conj {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ : List F} :
                                                                                                                                                          𝓢 ⊢! Γ φΓ, 𝓢 ⊢! φ
                                                                                                                                                          theorem LO.System.conjconj_subset! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, φ Δ) :
                                                                                                                                                          𝓢 ⊢! Δ Γ
                                                                                                                                                          theorem LO.System.conjconj_provable! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, Δ ⊢[𝓢]! φ) :
                                                                                                                                                          𝓢 ⊢! Δ Γ
                                                                                                                                                          theorem LO.System.conjconj_provable₂! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} (h : φΓ, Δ ⊢[𝓢]! φ) :
                                                                                                                                                          Δ ⊢[𝓢]! Γ
                                                                                                                                                          theorem LO.System.id_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} (he : gΓ, g = φ) :
                                                                                                                                                          𝓢 ⊢! φ Γ
                                                                                                                                                          theorem LO.System.replace_imply_left_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} (he : gΓ, g = φ) (hd : 𝓢 ⊢! Γ ψ) :
                                                                                                                                                          𝓢 ⊢! φ ψ
                                                                                                                                                          theorem LO.System.iff_imply_left_cons_conj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
                                                                                                                                                          𝓢 ⊢! (φ :: Γ) ψ 𝓢 ⊢! φ Γ ψ
                                                                                                                                                          @[simp]
                                                                                                                                                          theorem LO.System.imply_left_concat_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                          @[simp]
                                                                                                                                                          theorem LO.System.forthback_conj_remove! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} :
                                                                                                                                                          𝓢 ⊢! List.remove φ Γ φ Γ
                                                                                                                                                          theorem LO.System.imply_left_remove_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} (b : 𝓢 ⊢! Γ ψ) :
                                                                                                                                                          𝓢 ⊢! List.remove φ Γ φ ψ
                                                                                                                                                          theorem LO.System.iff_concat_conj'! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
                                                                                                                                                          @[simp]
                                                                                                                                                          theorem LO.System.iff_concat_conj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                          theorem LO.System.imply_left_conj_concat! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ Δ : List F} :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) φ 𝓢 ⊢! Γ Δ φ
                                                                                                                                                          theorem LO.System.iff_concact_disj! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) Γ Δ
                                                                                                                                                          theorem LO.System.iff_concact_disj'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {Γ Δ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                          𝓢 ⊢! (Γ ++ Δ) 𝓢 ⊢! Γ Δ
                                                                                                                                                          theorem LO.System.implyRight_cons_disj! {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ ψ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                          𝓢 ⊢! φ (ψ :: Γ) 𝓢 ⊢! φ ψ Γ
                                                                                                                                                          @[simp]
                                                                                                                                                          theorem LO.System.forthback_disj_remove {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] :
                                                                                                                                                          𝓢 ⊢! Γ φ List.remove φ Γ
                                                                                                                                                          theorem LO.System.disj_allsame! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (hd : ψΓ, ψ = φ) :
                                                                                                                                                          𝓢 ⊢! Γ φ
                                                                                                                                                          theorem LO.System.disj_allsame'! {F : Type u_1} [LO.LogicalConnective F] [DecidableEq F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] {φ : F} {Γ : List F} [LO.System.HasAxiomEFQ 𝓢] (hd : ψΓ, ψ = φ) (h : 𝓢 ⊢! Γ) :
                                                                                                                                                          𝓢 ⊢! φ
                                                                                                                                                          theorem LO.System.inconsistent_of_provable_of_unprovable {F : Type u_1} [LO.LogicalConnective F] {S : Type u_2} [LO.System F S] {𝓢 : S} [LO.System.Minimal 𝓢] [LO.System.HasAxiomEFQ 𝓢] {φ : F} (hp : 𝓢 ⊢! φ) (hn : 𝓢 ⊢! φ) :