def
LO.System.mdp_in
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.mdp_in = LO.System.FiniteContext.deduct' (let_fun hp := LO.System.FiniteContext.byAxm ⋯; let_fun hpq := LO.System.FiniteContext.byAxm ⋯; hpq⨀hp)
Instances For
theorem
LO.System.mdp_in!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.bot_of_mem_either
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
(h₁ : φ ∈ Γ)
(h₂ : ∼φ ∈ Γ)
:
Equations
Instances For
@[simp]
theorem
LO.System.bot_of_mem_either!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
(h₁ : φ ∈ Γ)
(h₂ : ∼φ ∈ Γ)
:
def
LO.System.efq_of_mem_either
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
(h₁ : φ ∈ Γ)
(h₂ : ∼φ ∈ Γ)
:
Equations
Instances For
@[simp]
theorem
LO.System.efq_of_mem_either!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
(h₁ : φ ∈ Γ)
(h₂ : ∼φ ∈ Γ)
:
def
LO.System.efq_imply_not₁
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
Equations
- LO.System.efq_imply_not₁ = LO.System.FiniteContext.deduct' (LO.System.FiniteContext.deduct (LO.System.efq_of_mem_either ⋯ ⋯))
Instances For
@[simp]
theorem
LO.System.efq_imply_not₁!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
def
LO.System.efq_imply_not₂
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
Equations
- LO.System.efq_imply_not₂ = LO.System.FiniteContext.deduct' (LO.System.FiniteContext.deduct (LO.System.efq_of_mem_either ⋯ ⋯))
Instances For
@[simp]
theorem
LO.System.efq_imply_not₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
theorem
LO.System.efq_of_neg!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(h : 𝓢 ⊢! ∼φ)
:
theorem
LO.System.efq_of_neg₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(h : 𝓢 ⊢! φ)
:
def
LO.System.neg_mdp
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(hnp : 𝓢 ⊢ ∼φ)
(hn : 𝓢 ⊢ φ)
:
Equations
- LO.System.neg_mdp hnp hn = LO.System.neg_equiv'.mp hnp⨀hn
Instances For
theorem
LO.System.neg_mdp!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(hnp : 𝓢 ⊢! ∼φ)
(hn : 𝓢 ⊢! φ)
:
def
LO.System.dneOr
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(d : 𝓢 ⊢ ∼∼φ ⋎ ∼∼ψ)
:
Equations
- LO.System.dneOr d = LO.System.or₃''' (LO.System.impTrans'' LO.System.dne LO.System.or₁) (LO.System.impTrans'' LO.System.dne LO.System.or₂) d
Instances For
def
LO.System.implyLeftOr'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ φ ➝ χ)
:
Equations
Instances For
theorem
LO.System.imply_left_or'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ χ)
:
def
LO.System.implyRightOr'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ ψ ➝ χ)
:
Equations
Instances For
theorem
LO.System.imply_right_or'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! ψ ➝ χ)
:
def
LO.System.implyRightAnd
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hq : 𝓢 ⊢ φ ➝ ψ)
(hr : 𝓢 ⊢ φ ➝ χ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.imply_right_and!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hq : 𝓢 ⊢! φ ➝ ψ)
(hr : 𝓢 ⊢! φ ➝ χ)
:
theorem
LO.System.imply_left_and_comm'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(d : 𝓢 ⊢! φ ⋏ ψ ➝ χ)
:
theorem
LO.System.dhyp_and_left!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ χ)
:
theorem
LO.System.dhyp_and_right!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ χ)
:
theorem
LO.System.cut!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ c ψ₁ φ₂ ψ₂ : F}
(d₁ : 𝓢 ⊢! φ₁ ⋏ c ➝ ψ₁)
(d₂ : 𝓢 ⊢! φ₂ ➝ c ⋎ ψ₂)
:
def
LO.System.orComm
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.orComm = LO.System.FiniteContext.deduct' (LO.System.or₃''' LO.System.or₂ LO.System.or₁ LO.System.FiniteContext.id)
Instances For
theorem
LO.System.or_comm!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.orComm'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ φ ⋎ ψ)
:
Equations
- LO.System.orComm' h = LO.System.orComm⨀h
Instances For
theorem
LO.System.or_comm'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ⋎ ψ)
:
theorem
LO.System.or_assoc'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
:
theorem
LO.System.and_assoc!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
:
def
LO.System.andReplaceLeft'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢ φ ⋏ ψ)
(h : 𝓢 ⊢ φ ➝ χ)
:
Equations
- LO.System.andReplaceLeft' hc h = LO.System.and₃' (h⨀LO.System.and₁' hc) (LO.System.and₂' hc)
Instances For
theorem
LO.System.and_replace_left'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢! φ ⋏ ψ)
(h : 𝓢 ⊢! φ ➝ χ)
:
def
LO.System.andReplaceLeft
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ φ ➝ χ)
:
Equations
- LO.System.andReplaceLeft h = LO.System.FiniteContext.deduct' (LO.System.andReplaceLeft' LO.System.FiniteContext.id (LO.System.FiniteContext.of h))
Instances For
theorem
LO.System.and_replace_left!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ χ)
:
def
LO.System.andReplaceRight'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢ φ ⋏ ψ)
(h : 𝓢 ⊢ ψ ➝ χ)
:
Equations
- LO.System.andReplaceRight' hc h = LO.System.and₃' (LO.System.and₁' hc) (h⨀LO.System.and₂' hc)
Instances For
theorem
LO.System.andReplaceRight'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢! φ ⋏ ψ)
(h : 𝓢 ⊢! ψ ➝ χ)
:
def
LO.System.andReplaceRight
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ ψ ➝ χ)
:
Equations
- LO.System.andReplaceRight h = LO.System.FiniteContext.deduct' (LO.System.andReplaceRight' LO.System.FiniteContext.id (LO.System.FiniteContext.of h))
Instances For
theorem
LO.System.and_replace_right!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! ψ ➝ χ)
:
def
LO.System.andReplace'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ s : F}
(hc : 𝓢 ⊢ φ ⋏ ψ)
(h₁ : 𝓢 ⊢ φ ➝ χ)
(h₂ : 𝓢 ⊢ ψ ➝ s)
:
Equations
- LO.System.andReplace' hc h₁ h₂ = LO.System.andReplaceRight' (LO.System.andReplaceLeft' hc h₁) h₂
Instances For
theorem
LO.System.and_replace'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ s : F}
(hc : 𝓢 ⊢! φ ⋏ ψ)
(h₁ : 𝓢 ⊢! φ ➝ χ)
(h₂ : 𝓢 ⊢! ψ ➝ s)
:
def
LO.System.andReplace
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ s : F}
(h₁ : 𝓢 ⊢ φ ➝ χ)
(h₂ : 𝓢 ⊢ ψ ➝ s)
:
Equations
- LO.System.andReplace h₁ h₂ = LO.System.FiniteContext.deduct' (LO.System.andReplace' LO.System.FiniteContext.id (LO.System.FiniteContext.of h₁) (LO.System.FiniteContext.of h₂))
Instances For
theorem
LO.System.and_replace!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ s : F}
(h₁ : 𝓢 ⊢! φ ➝ χ)
(h₂ : 𝓢 ⊢! ψ ➝ s)
:
def
LO.System.orReplaceLeft'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢ φ ⋎ ψ)
(hp : 𝓢 ⊢ φ ➝ χ)
:
Equations
- LO.System.orReplaceLeft' hc hp = LO.System.or₃''' (LO.System.impTrans'' hp LO.System.or₁) LO.System.or₂ hc
Instances For
theorem
LO.System.or_replace_left'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢! φ ⋎ ψ)
(hp : 𝓢 ⊢! φ ➝ χ)
:
def
LO.System.orReplaceLeft
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hp : 𝓢 ⊢ φ ➝ χ)
:
Equations
- LO.System.orReplaceLeft hp = LO.System.FiniteContext.deduct' (LO.System.orReplaceLeft' LO.System.FiniteContext.id (LO.System.FiniteContext.of hp))
Instances For
theorem
LO.System.or_replace_left!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hp : 𝓢 ⊢! φ ➝ χ)
:
def
LO.System.orReplaceRight'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢ φ ⋎ ψ)
(hq : 𝓢 ⊢ ψ ➝ χ)
:
Equations
- LO.System.orReplaceRight' hc hq = LO.System.or₃''' LO.System.or₁ (LO.System.impTrans'' hq LO.System.or₂) hc
Instances For
theorem
LO.System.or_replace_right'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hc : 𝓢 ⊢! φ ⋎ ψ)
(hq : 𝓢 ⊢! ψ ➝ χ)
:
def
LO.System.orReplaceRight
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hq : 𝓢 ⊢ ψ ➝ χ)
:
Equations
- LO.System.orReplaceRight hq = LO.System.FiniteContext.deduct' (LO.System.orReplaceRight' LO.System.FiniteContext.id (LO.System.FiniteContext.of hq))
Instances For
theorem
LO.System.or_replace_right!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(hq : 𝓢 ⊢! ψ ➝ χ)
:
def
LO.System.orReplace'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ ψ₁ φ₂ ψ₂ : F}
(h : 𝓢 ⊢ φ₁ ⋎ ψ₁)
(hp : 𝓢 ⊢ φ₁ ➝ φ₂)
(hq : 𝓢 ⊢ ψ₁ ➝ ψ₂)
:
Equations
- LO.System.orReplace' h hp hq = LO.System.orReplaceRight' (LO.System.orReplaceLeft' h hp) hq
Instances For
theorem
LO.System.or_replace'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ ψ₁ φ₂ ψ₂ : F}
(h : 𝓢 ⊢! φ₁ ⋎ ψ₁)
(hp : 𝓢 ⊢! φ₁ ➝ φ₂)
(hq : 𝓢 ⊢! ψ₁ ➝ ψ₂)
:
def
LO.System.orReplace
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢ φ₁ ➝ φ₂)
(hq : 𝓢 ⊢ ψ₁ ➝ ψ₂)
:
Equations
- LO.System.orReplace hp hq = LO.System.FiniteContext.deduct' (LO.System.orReplace' LO.System.FiniteContext.id (LO.System.FiniteContext.of hp) (LO.System.FiniteContext.of hq))
Instances For
theorem
LO.System.or_replace!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢! φ₁ ➝ φ₂)
(hq : 𝓢 ⊢! ψ₁ ➝ ψ₂)
:
def
LO.System.orReplaceIff
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢ φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢ ψ₁ ⭤ ψ₂)
:
Equations
- LO.System.orReplaceIff hp hq = LO.System.iffIntro (LO.System.orReplace (LO.System.and₁' hp) (LO.System.and₁' hq)) (LO.System.orReplace (LO.System.and₂' hp) (LO.System.and₂' hq))
Instances For
theorem
LO.System.or_replace_iff!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢! φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢! ψ₁ ⭤ ψ₂)
:
theorem
LO.System.or_assoc!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
:
theorem
LO.System.or_replace_right_iff!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(d : 𝓢 ⊢! ψ ⭤ χ)
:
theorem
LO.System.or_replace_left_iff!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(d : 𝓢 ⊢! φ ⭤ χ)
:
def
LO.System.andReplaceIff
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢ φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢ ψ₁ ⭤ ψ₂)
:
Equations
- LO.System.andReplaceIff hp hq = LO.System.iffIntro (LO.System.andReplace (LO.System.and₁' hp) (LO.System.and₁' hq)) (LO.System.andReplace (LO.System.and₂' hp) (LO.System.and₂' hq))
Instances For
theorem
LO.System.and_replace_iff!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢! φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢! ψ₁ ⭤ ψ₂)
:
def
LO.System.impReplaceIff
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢ φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢ ψ₁ ⭤ ψ₂)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.imp_replace_iff!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢! φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢! ψ₁ ⭤ ψ₂)
:
theorem
LO.System.imp_replace_iff!'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ₁ φ₂ ψ₁ ψ₂ : F}
(hp : 𝓢 ⊢! φ₁ ⭤ φ₂)
(hq : 𝓢 ⊢! ψ₁ ⭤ ψ₂)
:
def
LO.System.dni
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
Equations
Instances For
@[simp]
theorem
LO.System.dni!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
def
LO.System.dni'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢ φ)
:
Equations
- LO.System.dni' b = LO.System.dni⨀b
Instances For
theorem
LO.System.dni'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢! φ)
:
def
LO.System.dniOr'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢ φ ⋎ ψ)
:
Equations
- LO.System.dniOr' d = LO.System.or₃''' (LO.System.impTrans'' LO.System.dni LO.System.or₁) (LO.System.impTrans'' LO.System.dni LO.System.or₂) d
Instances For
theorem
LO.System.dni_or'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢! φ ⋎ ψ)
:
def
LO.System.dniAnd'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢ φ ⋏ ψ)
:
Equations
Instances For
theorem
LO.System.dni_and'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢! φ ⋏ ψ)
:
def
LO.System.falsumDNE
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.System.falsumDN
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
:
Equations
- LO.System.falsumDN = LO.System.andIntro LO.System.falsumDNE LO.System.dni
Instances For
def
LO.System.dn
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.dn = LO.System.iffIntro LO.System.dni LO.System.dne
Instances For
@[simp]
theorem
LO.System.dn!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.HasAxiomDNE 𝓢]
:
def
LO.System.contra₀
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
def
LO.System.contra₀!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- ⋯ = ⋯
Instances For
def
LO.System.contra₀'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ φ ➝ ψ)
:
Equations
- LO.System.contra₀' b = LO.System.contra₀⨀b
Instances For
theorem
LO.System.contra₀'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! φ ➝ ψ)
:
def
LO.System.contra₀x2'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ φ ➝ ψ)
:
Equations
Instances For
theorem
LO.System.contra₀x2'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! φ ➝ ψ)
:
def
LO.System.contra₀x2
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.contra₀x2 = LO.System.FiniteContext.deduct' (LO.System.contra₀x2' LO.System.FiniteContext.id)
Instances For
@[simp]
theorem
LO.System.contra₀x2!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.contra₁'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ φ ➝ ∼ψ)
:
Equations
- LO.System.contra₁' b = LO.System.impTrans'' LO.System.dni (LO.System.contra₀' b)
Instances For
theorem
LO.System.contra₁'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! φ ➝ ∼ψ)
:
def
LO.System.contra₁
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.contra₁ = LO.System.FiniteContext.deduct' (LO.System.contra₁' LO.System.FiniteContext.id)
Instances For
theorem
LO.System.contra₁!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.contra₂'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢ ∼φ ➝ ψ)
:
Equations
- LO.System.contra₂' b = LO.System.impTrans'' (LO.System.contra₀' b) LO.System.dne
Instances For
theorem
LO.System.contra₂'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢! ∼φ ➝ ψ)
:
def
LO.System.contra₂
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.contra₂ = LO.System.FiniteContext.deduct' (LO.System.contra₂' LO.System.FiniteContext.id)
Instances For
@[simp]
theorem
LO.System.contra₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
def
LO.System.contra₃'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢ ∼φ ➝ ∼ψ)
:
Equations
- LO.System.contra₃' b = LO.System.impTrans'' LO.System.dni (LO.System.contra₂' b)
Instances For
theorem
LO.System.contra₃'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢! ∼φ ➝ ∼ψ)
:
def
LO.System.contra₃
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.contra₃ = LO.System.FiniteContext.deduct' (LO.System.contra₃' LO.System.FiniteContext.id)
Instances For
@[simp]
theorem
LO.System.contra₃!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
def
LO.System.negReplaceIff'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ φ ⭤ ψ)
:
Equations
Instances For
theorem
LO.System.neg_replace_iff'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! φ ⭤ ψ)
:
def
LO.System.iffNegLeftToRight'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(h : 𝓢 ⊢ φ ⭤ ∼ψ)
:
Equations
Instances For
theorem
LO.System.iff_neg_left_to_right'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(h : 𝓢 ⊢! φ ⭤ ∼ψ)
:
def
LO.System.iffNegRightToLeft'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(h : 𝓢 ⊢ ∼φ ⭤ ψ)
:
Equations
Instances For
theorem
LO.System.iff_neg_right_to_left'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(h : 𝓢 ⊢! ∼φ ⭤ ψ)
:
def
LO.System.negneg_equiv
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.NegationEquiv 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.negneg_equiv!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.NegationEquiv 𝓢]
:
def
LO.System.negneg_equiv_dne
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.NegationEquiv 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.negneg_equiv_dne = LO.System.iffTrans'' LO.System.dn LO.System.negneg_equiv
Instances For
theorem
LO.System.negneg_equiv_dne!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
[LO.System.NegationEquiv 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
def
LO.System.elim_contra_neg
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomElimContra 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.elim_contra_neg!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomElimContra 𝓢]
:
def
LO.System.tne
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
Equations
- LO.System.tne = LO.System.contra₀' LO.System.dni
Instances For
@[simp]
theorem
LO.System.tne!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
def
LO.System.tne'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢ ∼∼∼φ)
:
Equations
- LO.System.tne' b = LO.System.tne⨀b
Instances For
theorem
LO.System.tne'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢! ∼∼∼φ)
:
def
LO.System.tneIff
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
Equations
- LO.System.tneIff = LO.System.andIntro LO.System.tne LO.System.dni
Instances For
def
LO.System.implyLeftReplace
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ ψ ➝ φ)
:
Equations
- LO.System.implyLeftReplace h = LO.System.FiniteContext.deduct' (LO.System.impTrans'' (LO.System.FiniteContext.of h) LO.System.FiniteContext.id)
Instances For
theorem
LO.System.replace_imply_left!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! ψ ➝ φ)
:
theorem
LO.System.replace_imply_left_by_iff'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
theorem
LO.System.replace_imply_right_by_iff'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
def
LO.System.impSwap'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ φ ➝ ψ ➝ χ)
:
Equations
Instances For
theorem
LO.System.imp_swap'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ ψ ➝ χ)
:
def
LO.System.impSwap
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
:
Equations
- LO.System.impSwap = LO.System.FiniteContext.deduct' (LO.System.impSwap' LO.System.FiniteContext.id)
Instances For
@[simp]
theorem
LO.System.imp_swap!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
:
def
LO.System.ppq
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢ φ ➝ φ ➝ ψ)
:
Equations
- LO.System.ppq h = LO.System.FiniteContext.deduct' (let_fun this := LO.System.FiniteContext.of h; this⨀LO.System.FiniteContext.byAxm ⋯⨀LO.System.FiniteContext.byAxm ⋯)
Instances For
theorem
LO.System.ppq!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ➝ φ ➝ ψ)
:
def
LO.System.p_pq_q
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.p_pq_q = LO.System.impSwap' (LO.System.impId (φ ➝ ψ))
Instances For
theorem
LO.System.p_pq_q!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.dhyp_imp'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ φ ➝ ψ)
:
Equations
- LO.System.dhyp_imp' h = LO.System.imply₂⨀LO.System.imply₁' h
Instances For
theorem
LO.System.dhyp_imp'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! φ ➝ ψ)
:
def
LO.System.rev_dhyp_imp'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢ ψ ➝ φ)
:
Equations
- LO.System.rev_dhyp_imp' h = LO.System.impSwap' (LO.System.impTrans'' h LO.System.p_pq_q)
Instances For
theorem
LO.System.rev_dhyp_imp'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ χ : F}
(h : 𝓢 ⊢! ψ ➝ φ)
:
noncomputable def
LO.System.dnDistributeImply
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.dn_distribute_imply!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
noncomputable def
LO.System.dnDistributeImply'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ ∼∼(φ ➝ ψ))
:
Equations
- LO.System.dnDistributeImply' b = LO.System.dnDistributeImply⨀b
Instances For
theorem
LO.System.dn_distribute_imply'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! ∼∼(φ ➝ ψ))
:
def
LO.System.introFalsumOfAnd'
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢ φ ⋏ ∼φ)
:
Equations
Instances For
theorem
LO.System.intro_falsum_of_and'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! φ ⋏ ∼φ)
:
theorem
LO.System.lac'!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
(h : 𝓢 ⊢! φ ⋏ ∼φ)
:
Law of contradiction
def
LO.System.introFalsumOfAnd
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
Equations
- LO.System.introFalsumOfAnd = LO.System.FiniteContext.deduct' (LO.System.introFalsumOfAnd' LO.System.FiniteContext.id)
Instances For
@[simp]
theorem
LO.System.intro_bot_of_and!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
theorem
LO.System.lac!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
:
Law of contradiction
def
LO.System.implyOfNotOr
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.imply_of_not_or!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
def
LO.System.implyOfNotOr'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(b : 𝓢 ⊢ ∼φ ⋎ ψ)
:
Equations
- LO.System.implyOfNotOr' b = LO.System.implyOfNotOr⨀b
Instances For
theorem
LO.System.imply_of_not_or'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(b : 𝓢 ⊢! ∼φ ⋎ ψ)
:
def
LO.System.demorgan₁
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- LO.System.demorgan₁ = LO.System.or₃'' (LO.System.contra₀' LO.System.and₁) (LO.System.contra₀' LO.System.and₂)
Instances For
@[simp]
theorem
LO.System.demorgan₁!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.demorgan₁'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢ ∼φ ⋎ ∼ψ)
:
Equations
- LO.System.demorgan₁' d = LO.System.demorgan₁⨀d
Instances For
theorem
LO.System.demorgan₁'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢! ∼φ ⋎ ∼ψ)
:
def
LO.System.demorgan₂
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.demorgan₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.demorgan₂'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢ ∼φ ⋏ ∼ψ)
:
Equations
- LO.System.demorgan₂' d = LO.System.demorgan₂⨀d
Instances For
theorem
LO.System.demorgan₂'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(d : 𝓢 ⊢! ∼φ ⋏ ∼ψ)
:
def
LO.System.demorgan₃
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.demorgan₃!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
:
def
LO.System.demorgan₃'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢ ∼(φ ⋎ ψ))
:
Equations
- LO.System.demorgan₃' b = LO.System.demorgan₃⨀b
Instances For
theorem
LO.System.demorgan₃'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
(b : 𝓢 ⊢! ∼(φ ⋎ ψ))
:
noncomputable def
LO.System.demorgan₄
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.demorgan₄ = LO.System.contra₂' (LO.System.FiniteContext.deduct' (LO.System.andReplace' (LO.System.demorgan₃' LO.System.FiniteContext.id) LO.System.dne LO.System.dne))
Instances For
@[simp]
theorem
LO.System.demorgan₄!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
noncomputable def
LO.System.demorgan₄'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢ ∼(φ ⋏ ψ))
:
Equations
- LO.System.demorgan₄' b = LO.System.demorgan₄⨀b
Instances For
theorem
LO.System.demorgan₄'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(b : 𝓢 ⊢! ∼(φ ⋏ ψ))
:
noncomputable def
LO.System.NotOrOfImply'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(d : 𝓢 ⊢ φ ➝ ψ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.not_or_of_imply'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
(d : 𝓢 ⊢! φ ➝ ψ)
:
noncomputable def
LO.System.NotOrOfImply
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.NotOrOfImply = LO.System.FiniteContext.deduct' (LO.System.NotOrOfImply' (LO.System.FiniteContext.byAxm ⋯))
Instances For
theorem
LO.System.not_or_of_imply!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
noncomputable def
LO.System.dnCollectImply
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.dn_collect_imply!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
:
noncomputable def
LO.System.dnCollectImply'
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(b : 𝓢 ⊢ ∼∼φ ➝ ∼∼ψ)
:
Equations
- LO.System.dnCollectImply' b = LO.System.dnCollectImply⨀b
Instances For
theorem
LO.System.dn_collect_imply'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomEFQ 𝓢]
(b : 𝓢 ⊢! ∼∼φ ➝ ∼∼ψ)
:
def
LO.System.andImplyAndOfImply
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ φ' ψ' : F}
(bp : 𝓢 ⊢ φ ➝ φ')
(bq : 𝓢 ⊢ ψ ➝ ψ')
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.System.andIffAndOfIff
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ φ' ψ' : F}
(bp : 𝓢 ⊢ φ ⭤ φ')
(bq : 𝓢 ⊢ ψ ⭤ ψ')
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.System.instHasAxiomEFQOfHasAxiomDNE
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
LO.System.instHasAxiomLEMOfHasAxiomDNE
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- LO.System.instHasAxiomLEMOfHasAxiomDNE = { lem := fun (x : F) => LO.System.dneOr (LO.System.NotOrOfImply' LO.System.dni) }
instance
LO.System.instHasAxiomDNEOfHasAxiomEFQOfHasAxiomLEM
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomEFQ 𝓢]
[LO.System.HasAxiomLEM 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
instance
LO.System.instHasAxiomWeakLEMOfHasAxiomLEM
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.HasAxiomLEM 𝓢]
:
Equations
- LO.System.instHasAxiomWeakLEMOfHasAxiomLEM = { wlem := fun (φ : F) => LO.System.lem }
instance
LO.System.instHasAxiomDummettOfHasAxiomEFQOfHasAxiomLEM
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomEFQ 𝓢]
[LO.System.HasAxiomLEM 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
instance
LO.System.instHasAxiomWeakLEMOfHasAxiomEFQOfHasAxiomDummett
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomEFQ 𝓢]
[LO.System.HasAxiomDummett 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
LO.System.instHasAxiomPeirceOfHasAxiomDNE
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
instance
LO.System.instHasAxiomElimContraOfHasAxiomDNE
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
LO.System.implyIffNotOr
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.System.imply_iff_not_or!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
[LO.System.HasAxiomDNE 𝓢]
:
Equations
- ⋯ = ⋯
Instances For
def
LO.System.conjIffConj
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
(Γ : List F)
:
Equations
- LO.System.conjIffConj [] = LO.System.iffId ⊤
- LO.System.conjIffConj [head] = LO.System.iffIntro (LO.System.FiniteContext.deduct' (LO.System.andIntro LO.System.FiniteContext.id LO.System.verum)) LO.System.and₁
- LO.System.conjIffConj (φ :: ψ :: Γ) = LO.System.andIffAndOfIff (LO.System.iffId φ) (LO.System.conjIffConj (ψ :: Γ))
Instances For
@[simp]
theorem
LO.System.conjIffConj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ : List F}
:
theorem
LO.System.implyLeft_conj_eq_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
:
theorem
LO.System.generalConj'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
(h : φ ∈ Γ)
:
theorem
LO.System.generalConj'₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
(h : φ ∈ Γ)
(d : 𝓢 ⊢! ⋀Γ)
:
𝓢 ⊢! φ
theorem
LO.System.iff_provable_list_conj
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ : List F}
:
theorem
LO.System.conjconj_subset!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
(h : ∀ φ ∈ Γ, φ ∈ Δ)
:
theorem
LO.System.conjconj_provable!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
(h : ∀ φ ∈ Γ, Δ ⊢[𝓢]! φ)
:
theorem
LO.System.conjconj_provable₂!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
(h : ∀ φ ∈ Γ, Δ ⊢[𝓢]! φ)
:
theorem
LO.System.id_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
(he : ∀ g ∈ Γ, g = φ)
:
theorem
LO.System.replace_imply_left_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
(he : ∀ g ∈ Γ, g = φ)
(hd : 𝓢 ⊢! ⋀Γ ➝ ψ)
:
theorem
LO.System.iff_imply_left_cons_conj'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
:
@[simp]
theorem
LO.System.imply_left_concat_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
:
@[simp]
theorem
LO.System.forthback_conj_remove!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
:
theorem
LO.System.imply_left_remove_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
(b : 𝓢 ⊢! ⋀Γ ➝ ψ)
:
𝓢 ⊢! ⋀List.remove φ Γ ⋏ φ ➝ ψ
@[simp]
theorem
LO.System.iff_concat_conj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
:
theorem
LO.System.imply_left_conj_concat!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ Δ : List F}
:
theorem
LO.System.iff_concact_disj!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
[LO.System.HasAxiomEFQ 𝓢]
:
theorem
LO.System.iff_concact_disj'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{Γ Δ : List F}
[LO.System.HasAxiomEFQ 𝓢]
:
theorem
LO.System.implyRight_cons_disj!
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
:
@[simp]
theorem
LO.System.forthback_disj_remove
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
:
theorem
LO.System.disj_allsame!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
(hd : ∀ ψ ∈ Γ, ψ = φ)
:
theorem
LO.System.disj_allsame'!
{F : Type u_1}
[LO.LogicalConnective F]
[DecidableEq F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
{φ : F}
{Γ : List F}
[LO.System.HasAxiomEFQ 𝓢]
(hd : ∀ ψ ∈ Γ, ψ = φ)
(h : 𝓢 ⊢! ⋁Γ)
:
𝓢 ⊢! φ
theorem
LO.System.inconsistent_of_provable_of_unprovable
{F : Type u_1}
[LO.LogicalConnective F]
{S : Type u_2}
[LO.System F S]
{𝓢 : S}
[LO.System.Minimal 𝓢]
[LO.System.HasAxiomEFQ 𝓢]
{φ : F}
(hp : 𝓢 ⊢! φ)
(hn : 𝓢 ⊢! ∼φ)
: