Documentation

Incompleteness.Arith.Second

def LO.Arith.Formalized.substNumerals {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k : } (φ : V) (v : Fin kV) :
V
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def LO.FirstOrder.Arith.ssnums {k : } :
      𝚺₁.Semisentence (k + 2)
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          diagi(x):=(y)[(jssnums(yj,xj,x))θi(y)]

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                theorem LO.FirstOrder.Arith.provableₐ_D1 {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {σ : Sentence ℒₒᵣ} :
                U ⊢!. σT ⊢!. U.bewₐ σ
                theorem LO.FirstOrder.Arith.provableₐ_D2 {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {σ π : Sentence ℒₒᵣ} :
                T ⊢!. U.bewₐ (σ π) U.bewₐ σ U.bewₐ π
                theorem LO.FirstOrder.Arith.provableₐ_sigma₁_complete {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {σ : Sentence ℒₒᵣ} (hσ : Hierarchy 𝚺 1 σ) :
                T ⊢!. σ U.bewₐ σ
                theorem LO.FirstOrder.Arith.provableₐ_D3 {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {σ : Sentence ℒₒᵣ} :
                T ⊢!. U.bewₐ σ U.bewₐ (U.bewₐ σ)
                theorem LO.FirstOrder.Arith.goedel_iff_unprovable_goedel {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] :
                T ⊢!. U.goedelₐ U.bewₐ U.goedelₐ
                theorem LO.FirstOrder.Arith.provableₐ_D2_context {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {Γ : List (Sentence ℒₒᵣ)} {σ π : Sentence ℒₒᵣ} (hσπ : Γ ⊢[T.alt]! U.bewₐ (σ π)) (hσ : Γ ⊢[T.alt]! U.bewₐ σ) :
                Γ ⊢[T.alt]! U.bewₐ π
                theorem LO.FirstOrder.Arith.provableₐ_D3_context {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] {Γ : List (Sentence ℒₒᵣ)} {σ : Sentence ℒₒᵣ} (hσπ : Γ ⊢[T.alt]! U.bewₐ σ) :
                Γ ⊢[T.alt]! U.bewₐ (U.bewₐ σ)
                theorem LO.FirstOrder.Arith.provableₐ_sound {T U : Theory ℒₒᵣ} [U.Delta1Definable] [ ⊧ₘ* T] [𝐑₀ U] {σ : Sentence ℒₒᵣ} :
                T ⊢!. U.bewₐ σU ⊢! σ
                theorem LO.FirstOrder.Arith.provableₐ_complete {T : Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : Theory ℒₒᵣ} [U.Delta1Definable] [ ⊧ₘ* T] [𝐑₀ U] {σ : Sentence ℒₒᵣ} :
                U ⊢! σ T ⊢!. U.bewₐ σ
                theorem LO.FirstOrder.Arith.goedel_unprovable (T : Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] [System.Consistent T] :
                T T.goedelₐ
                theorem LO.FirstOrder.Arith.not_goedel_unprovable (T : Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] [ ⊧ₘ* T] :
                T T.goedelₐ
                theorem LO.FirstOrder.Arith.consistent_iff_goedel (T : Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] :
                T ⊢! T.consistentₐ T.goedelₐ
                theorem LO.FirstOrder.Arith.goedel_second_incompleteness (T : Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] [System.Consistent T] :
                T T.consistentₐ

                Gödel's Second Incompleteness Theorem

                theorem LO.FirstOrder.Arith.inconsistent_unprovable (T : Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] [ ⊧ₘ* T] :
                T T.consistentₐ