Equations
- LO.Arith.Formalized.substNumeral φ x = ⌜ℒₒᵣ⌝.substs₁ (LO.Arith.Formalized.numeral x) φ
theorem
LO.Arith.Formalized.substNumeral_app_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(σ : FirstOrder.Semisentence ℒₒᵣ 1)
(n : ℕ)
:
theorem
LO.Arith.Formalized.substNumeral_app_quote_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(σ π : FirstOrder.Semisentence ℒₒᵣ 1)
:
def
LO.Arith.Formalized.substNumerals
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k : ℕ}
(φ : V)
(v : Fin k → V)
:
V
Equations
- LO.Arith.Formalized.substNumerals φ v = ⌜ℒₒᵣ⌝.substs ⌜fun (i : Fin k) => LO.Arith.Formalized.numeral (v i)⌝ φ
theorem
LO.Arith.Formalized.substNumerals_app_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k : ℕ}
(σ : FirstOrder.Semisentence ℒₒᵣ k)
(v : Fin k → ℕ)
:
(substNumerals ⌜σ⌝ fun (x : Fin k) => ↑(v x)) = ⌜(FirstOrder.Rewriting.app (FirstOrder.Rew.substs fun (i : Fin k) => ↑(v i))) σ⌝
theorem
LO.Arith.Formalized.substNumerals_app_quote_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k : ℕ}
(σ : FirstOrder.Semisentence ℒₒᵣ k)
(π : Fin k → FirstOrder.Semisentence ℒₒᵣ k)
:
(substNumerals ⌜σ⌝ fun (i : Fin k) => ⌜π i⌝) = ⌜(FirstOrder.Rewriting.app (FirstOrder.Rew.substs fun (i : Fin k) => ⌜π i⌝)) σ⌝
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.Arith.Formalized.eval_ssnum
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 3 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.ssnum) ↔ v 0 = substNumeral (v 1) (v 2)
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Formalized.substNumerals_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k : ℕ}
:
FirstOrder.Arith.HierarchySymbol.DefinedFunction
(fun (v : Fin (k + 1) → V) => substNumerals (v 0) fun (x : Fin k) => v x.succ) FirstOrder.Arith.ssnums
@[simp]
theorem
LO.Arith.Formalized.eval_ssnums
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k : ℕ}
(v : Fin (k + 2) → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.ssnums) ↔ v 0 = substNumerals (v 1) fun (i : Fin k) => v i.succ.succ
Equations
- One or more equations did not get rendered due to their size.
Equations
theorem
LO.FirstOrder.Arith.substs_diag
(θ σ : Semisentence ℒₒᵣ 1)
:
(diag θ)/[⌜σ⌝] = ∀' ((HierarchySymbol.Semiformula.val ssnum)/[Semiterm.bvar 0, ⌜σ⌝, ⌜σ⌝] ➝ θ/[Semiterm.bvar 0])
theorem
LO.FirstOrder.Arith.fixpoint_eq
(θ : Semisentence ℒₒᵣ 1)
:
fixpoint θ = ∀' ((HierarchySymbol.Semiformula.val ssnum)/[Semiterm.bvar 0, ⌜diag θ⌝, ⌜diag θ⌝] ➝ θ/[Semiterm.bvar 0])
Equations
- One or more equations did not get rendered due to their size.
Equations
- LO.FirstOrder.Arith.multifixpoint θ i = (LO.FirstOrder.Rewriting.app (LO.FirstOrder.Rew.substs fun (j : Fin k) => ⌜LO.FirstOrder.Arith.multidiag (θ j)⌝)) (LO.FirstOrder.Arith.multidiag (θ i))
theorem
LO.FirstOrder.Arith.multidiagonal
{T : Theory ℒₒᵣ}
[𝐈𝚺₁ ≼ T]
{k : ℕ}
{i : Fin k}
(θ : Fin k → Semisentence ℒₒᵣ k)
:
T ⊢!. multifixpoint θ i ⭤ (Rewriting.app (Rew.substs fun (j : Fin k) => ⌜multifixpoint θ j⌝)) (θ i)
Equations
- U.goedelₐ = LO.FirstOrder.Arith.fixpoint (∼LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val U.provableₐ)
theorem
LO.FirstOrder.Arith.goedel_unprovable
(T : Theory ℒₒᵣ)
[𝐈𝚺₁ ≼ T]
[T.Delta1Definable]
[System.Consistent T]
:
T ⊬ ↑T.goedelₐ
theorem
LO.FirstOrder.Arith.goedel_second_incompleteness
(T : Theory ℒₒᵣ)
[𝐈𝚺₁ ≼ T]
[T.Delta1Definable]
[System.Consistent T]
:
T ⊬ ↑T.consistentₐ
Gödel's Second Incompleteness Theorem
theorem
LO.FirstOrder.Arith.inconsistent_undecidable
(T : Theory ℒₒᵣ)
[𝐈𝚺₁ ≼ T]
[T.Delta1Definable]
[ℕ ⊧ₘ* T]
:
System.Undecidable T ↑T.consistentₐ