Documentation

Incompleteness.Arith.Second

def LO.Arith.Formalized.substNumerals {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k : } (φ : V) (v : Fin kV) :
V
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def LO.FirstOrder.Arith.ssnums {k : } :
      𝚺₁.Semisentence (k + 2)
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem LO.Arith.Formalized.substNumerals_defined {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k : } :
        LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin (k + 1)V) => LO.Arith.Formalized.substNumerals (v 0) fun (x : Fin k) => v x.succ) LO.FirstOrder.Arith.ssnums
        @[simp]
        theorem LO.Arith.Formalized.eval_ssnums {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k : } (v : Fin (k + 2)V) :
        V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val LO.FirstOrder.Arith.ssnums) v 0 = LO.Arith.Formalized.substNumerals (v 1) fun (i : Fin k) => v i.succ.succ
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          $\mathrm{diag}_i(\vec{x}) := (\forall \vec{y})\left[ \left(\bigwedge_j \mathrm{ssnums}(y_j, x_j, \vec{x})\right) \to \theta_i(\vec{y}) \right]$

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                theorem LO.FirstOrder.Arith.provableₐ_D2 {T : LO.FirstOrder.Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : LO.FirstOrder.Theory ℒₒᵣ} [U.Delta1Definable] {σ π : LO.FirstOrder.Sentence ℒₒᵣ} :
                T ⊢!. U.bewₐ (σ π) U.bewₐ σ U.bewₐ π
                theorem LO.FirstOrder.Arith.provableₐ_D2_context {T : LO.FirstOrder.Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : LO.FirstOrder.Theory ℒₒᵣ} [U.Delta1Definable] {Γ : List (LO.FirstOrder.Sentence ℒₒᵣ)} {σ π : LO.FirstOrder.Sentence ℒₒᵣ} (hσπ : Γ ⊢[T.alt]! U.bewₐ (σ π)) (hσ : Γ ⊢[T.alt]! U.bewₐ σ) :
                Γ ⊢[T.alt]! U.bewₐ π
                theorem LO.FirstOrder.Arith.provableₐ_D3_context {T : LO.FirstOrder.Theory ℒₒᵣ} [𝐈𝚺₁ T] {U : LO.FirstOrder.Theory ℒₒᵣ} [U.Delta1Definable] {Γ : List (LO.FirstOrder.Sentence ℒₒᵣ)} {σ : LO.FirstOrder.Sentence ℒₒᵣ} (hσπ : Γ ⊢[T.alt]! U.bewₐ σ) :
                Γ ⊢[T.alt]! U.bewₐ (U.bewₐ σ)
                theorem LO.FirstOrder.Arith.provableₐ_sound {T U : LO.FirstOrder.Theory ℒₒᵣ} [U.Delta1Definable] [ ⊧ₘ* T] [𝐑₀ U] {σ : LO.FirstOrder.Sentence ℒₒᵣ} :
                T ⊢!. U.bewₐ σU ⊢! σ
                theorem LO.FirstOrder.Arith.consistent_iff_goedel (T : LO.FirstOrder.Theory ℒₒᵣ) [𝐈𝚺₁ T] [T.Delta1Definable] :
                T ⊢! T.consistentₐ T.goedelₐ

                Gödel's Second Incompleteness Theorem