Documentation

Foundation.Logic.HilbertStyle.Context

@[reducible, inline]
abbrev LO.System.FiniteContext.conj {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] (Γ : FiniteContext F 𝓢) :
F
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.disj {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] (Γ : FiniteContext F 𝓢) :
F
Equations
instance LO.System.FiniteContext.instEmptyCollection {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Equations
instance LO.System.FiniteContext.instMembership {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Equations
instance LO.System.FiniteContext.instHasSubset {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Equations
instance LO.System.FiniteContext.instCons {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Cons F (FiniteContext F 𝓢)
Equations
theorem LO.System.FiniteContext.mem_def {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : FiniteContext F 𝓢} :
φ Γ φ Γ.ctx
@[simp]
theorem LO.System.FiniteContext.coe_subset_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {Γ Δ : List F} :
{ ctx := Γ } { ctx := Δ } Γ Δ
@[simp]
theorem LO.System.FiniteContext.mem_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : List F} :
φ { ctx := Γ } φ Γ
@[simp]
theorem LO.System.FiniteContext.not_mem_empty {F : Type u_1} {S : Type u_2} {𝓢 : S} (φ : F) :
φ
instance LO.System.FiniteContext.inst {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) :
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.Prf {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
Type u_3
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.Provable {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.Unprovable {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.PrfSet {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (s : Set F) :
Type (max u_3 u_1)
Equations
@[reducible, inline]
abbrev LO.System.FiniteContext.ProvableSet {F : Type u_1} {S : Type u_2} [System F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (s : Set F) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.FiniteContext.system_def {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] (Γ : FiniteContext F 𝓢) (φ : F) :
(Γ φ) = (𝓢 Γ.conj φ)
def LO.System.FiniteContext.ofDef {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : 𝓢 Γ φ) :
Γ ⊢[𝓢] φ
Equations
def LO.System.FiniteContext.toDef {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : Γ ⊢[𝓢] φ) :
𝓢 Γ φ
Equations
theorem LO.System.FiniteContext.toₛ! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : Γ ⊢[𝓢]! φ) :
𝓢 ⊢! Γ φ
theorem LO.System.FiniteContext.provable_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} {φ : F} :
Γ ⊢[𝓢]! φ 𝓢 ⊢! Γ φ
def LO.System.FiniteContext.cast {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ' : List F} {φ' : F} {Γ : List F} {φ : F} (d : Γ ⊢[𝓢] φ) (eΓ : Γ = Γ') (eφ : φ = φ') :
Γ' ⊢[𝓢] φ'
Equations
Equations
  • One or more equations did not get rendered due to their size.
instance LO.System.FiniteContext.instCompact {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] :
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.FiniteContext.nthAxm {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {Γ : List F} (n : ) (h : n < Γ.length := by simp) :
Γ ⊢[𝓢] Γ[n]
Equations
theorem LO.System.FiniteContext.nth_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {Γ : List F} (n : ) (h : n < Γ.length := by simp) :
Γ ⊢[𝓢]! Γ[n]
def LO.System.FiniteContext.byAxm {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] [DecidableEq F] {φ : F} (h : φ Γ := by simp) :
Γ ⊢[𝓢] φ
Equations
theorem LO.System.FiniteContext.by_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] [DecidableEq F] {φ : F} (h : φ Γ := by simp) :
Γ ⊢[𝓢]! φ
def LO.System.FiniteContext.weakening {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ Δ : List F} [System.Minimal 𝓢] [DecidableEq F] (h : Γ Δ) {φ : F} :
Γ ⊢[𝓢] φΔ ⊢[𝓢] φ
Equations
theorem LO.System.FiniteContext.weakening! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ Δ : List F} [System.Minimal 𝓢] [DecidableEq F] (h : Γ Δ) {φ : F} :
Γ ⊢[𝓢]! φΔ ⊢[𝓢]! φ
def LO.System.FiniteContext.of {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
Γ ⊢[𝓢] φ
Equations
def LO.System.FiniteContext.emptyPrf {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ : F} :
[] ⊢[𝓢] φ𝓢 φ
Equations
def LO.System.FiniteContext.provable_iff_provable {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ : F} :
𝓢 ⊢! φ [] ⊢[𝓢]! φ
Equations
  • =
theorem LO.System.FiniteContext.of'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 ⊢! φ) :
Γ ⊢[𝓢]! φ
@[simp]
theorem LO.System.FiniteContext.id! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ : F} :
[φ] ⊢[𝓢]! φ
def LO.System.FiniteContext.byAxm₀ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ : F} :
(φ :: Γ) ⊢[𝓢] φ
Equations
theorem LO.System.FiniteContext.by_axm₀! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ : F} :
(φ :: Γ) ⊢[𝓢]! φ
def LO.System.FiniteContext.byAxm₁ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ : F} :
(φ :: ψ :: Γ) ⊢[𝓢] ψ
Equations
theorem LO.System.FiniteContext.by_axm₁! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ : F} :
(φ :: ψ :: Γ) ⊢[𝓢]! ψ
def LO.System.FiniteContext.byAxm₂ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ χ : F} :
(φ :: ψ :: χ :: Γ) ⊢[𝓢] χ
Equations
theorem LO.System.FiniteContext.by_axm₂! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ χ : F} :
(φ :: ψ :: χ :: Γ) ⊢[𝓢]! χ
instance LO.System.FiniteContext.instModusPonens {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomVerum {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomImply₁ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomImply₂ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomAndElim {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomAndInst {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomOrInst {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instHasAxiomOrElim {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instNegationEquiv {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instMinimal {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
def LO.System.FiniteContext.mdp' {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ Δ : List F} [System.Minimal 𝓢] {φ ψ : F} [DecidableEq F] (bΓ : Γ ⊢[𝓢] φ ψ) (bΔ : Δ ⊢[𝓢] φ) :
(Γ ++ Δ) ⊢[𝓢] ψ
Equations
def LO.System.FiniteContext.deduct {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
(φ :: Γ) ⊢[𝓢] ψΓ ⊢[𝓢] φ ψ
Equations
theorem LO.System.FiniteContext.deduct! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ : F} (h : (φ :: Γ) ⊢[𝓢]! ψ) :
Γ ⊢[𝓢]! φ ψ
def LO.System.FiniteContext.deductInv {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
Γ ⊢[𝓢] φ ψ(φ :: Γ) ⊢[𝓢] ψ
Equations
theorem LO.System.FiniteContext.deductInv! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] {Γ : List F} [System.Minimal 𝓢] {φ ψ : F} (h : Γ ⊢[𝓢]! φ ψ) :
(φ :: Γ) ⊢[𝓢]! ψ
theorem LO.System.FiniteContext.deduct_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
Γ ⊢[𝓢]! φ ψ (φ :: Γ) ⊢[𝓢]! ψ
theorem LO.System.FiniteContext.deduct'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ ψ : F} (h : [φ] ⊢[𝓢]! ψ) :
𝓢 ⊢! φ ψ
theorem LO.System.FiniteContext.deductInv'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ ψ) :
[φ] ⊢[𝓢]! ψ
instance LO.System.FiniteContext.deduction {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
instance LO.System.FiniteContext.instHasAxiomEFQ {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] [HasAxiomEFQ 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
Equations
instance LO.System.FiniteContext.instHasAxiomDNE {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] [HasAxiomDNE 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.FiniteContext.instClassical {F : Type u_1} {S : Type u_2} {𝓢 : S} [System F S] [LogicalConnective F] [System.Minimal 𝓢] [System.Classical 𝓢] (Γ : FiniteContext F 𝓢) :
Equations
instance LO.System.Context.instCoeSet {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Coe (Set F) (Context F 𝓢)
Equations
instance LO.System.Context.instEmptyCollection {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Equations
instance LO.System.Context.instMembership {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Membership F (Context F 𝓢)
Equations
instance LO.System.Context.instHasSubset {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Equations
instance LO.System.Context.instCons {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Cons F (Context F 𝓢)
Equations
theorem LO.System.Context.mem_def {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : Context F 𝓢} :
φ Γ φ Γ.ctx
@[simp]
theorem LO.System.Context.coe_subset_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {Γ Δ : Set F} :
{ ctx := Γ } { ctx := Δ } Γ Δ
@[simp]
theorem LO.System.Context.mem_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : Set F} :
φ { ctx := Γ } φ Γ
@[simp]
theorem LO.System.Context.not_mem_empty {F : Type u_1} {S : Type u_2} {𝓢 : S} (φ : F) :
φ
instance LO.System.Context.instCollection {F : Type u_1} {S : Type u_2} {𝓢 : S} :
Collection F (Context F 𝓢)
Equations
structure LO.System.Context.Proof {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] (Γ : Context F 𝓢) (φ : F) :
Type (max u_1 u_3)
  • ctx : List F
  • subset (ψ : F) : ψ self.ctxψ Γ
  • prf : self.ctx ⊢[𝓢] φ
instance LO.System.Context.inst {F : Type u_1} {S : Type u_2} [LogicalConnective F] [System F S] (𝓢 : S) :
System F (Context F 𝓢)
Equations
@[reducible, inline]
abbrev LO.System.Context.Prf {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [System F S] (Γ : Set F) (φ : F) :
Type (max u_1 u_3)
Equations
@[reducible, inline]
abbrev LO.System.Context.Provable {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [System F S] (Γ : Set F) (φ : F) :
Equations
@[reducible, inline]
abbrev LO.System.Context.Unprovable {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [System F S] (Γ : Set F) (φ : F) :
Equations
@[reducible, inline]
abbrev LO.System.Context.PrfSet {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [System F S] (Γ s : Set F) :
Type (max u_1 u_3)
Equations
@[reducible, inline]
abbrev LO.System.Context.ProvableSet {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [System F S] (Γ s : Set F) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.Context.provable_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] {Γ : Set F} {φ : F} :
Γ *⊢[𝓢]! φ ∃ (Δ : List F), (∀ ψΔ, ψ Γ) Δ ⊢[𝓢]! φ
Equations
  • One or more equations did not get rendered due to their size.
instance LO.System.Context.instCompact {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] :
Compact (Context F 𝓢)
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.Context.deduct {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] [DecidableEq F] {φ ψ : F} {Γ : Set F} :
insert φ Γ *⊢[𝓢] ψΓ *⊢[𝓢] φ ψ
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.Context.deductInv {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ ψ : F} {Γ : Set F} :
Γ *⊢[𝓢] φ ψinsert φ Γ *⊢[𝓢] ψ
Equations
instance LO.System.Context.deduction {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] [DecidableEq F] :
Equations
  • One or more equations did not get rendered due to their size.
def LO.System.Context.of {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {Γ : Set F} {φ : F} (b : 𝓢 φ) :
Γ *⊢[𝓢] φ
Equations
theorem LO.System.Context.of! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ : F} {Γ : Set F} (b : 𝓢 ⊢! φ) :
Γ *⊢[𝓢]! φ
def LO.System.Context.mdp {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ ψ : F} [DecidableEq F] {Γ : Set F} (bpq : Γ *⊢[𝓢] φ ψ) (bp : Γ *⊢[𝓢] φ) :
Γ *⊢[𝓢] ψ
Equations
theorem LO.System.Context.by_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {Γ : Set F} {φ : F} [DecidableEq F] (h : φ Γ) :
Γ *⊢[𝓢]! φ
def LO.System.Context.emptyPrf {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ : F} :
*⊢[𝓢] φ𝓢 φ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.System.Context.emptyPrf! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ : F} :
*⊢[𝓢]! φ𝓢 ⊢! φ
theorem LO.System.Context.provable_iff_provable {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] {φ : F} :
𝓢 ⊢! φ *⊢[𝓢]! φ
instance LO.System.Context.minimal {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] [DecidableEq F] (Γ : Context F 𝓢) :
Equations
instance LO.System.Context.instHasAxiomEFQ {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] [HasAxiomEFQ 𝓢] (Γ : Context F 𝓢) :
Equations
instance LO.System.Context.instHasAxiomDNE {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [System.Minimal 𝓢] [HasAxiomDNE 𝓢] (Γ : Context F 𝓢) :
Equations
Equations
instance LO.System.Context.instClassicalOfDecidableEq {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [System F S] [DecidableEq F] [System.Classical 𝓢] (Γ : Context F 𝓢) :
Equations