instance
LO.System.FiniteContext.instCoeList
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Coe (List F) (FiniteContext F 𝓢)
Equations
@[reducible, inline]
abbrev
LO.System.FiniteContext.conj
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
 :
F
Instances For
@[reducible, inline]
abbrev
LO.System.FiniteContext.disj
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
 :
F
Instances For
instance
LO.System.FiniteContext.instEmptyCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
EmptyCollection (FiniteContext F 𝓢)
Equations
- LO.System.FiniteContext.instEmptyCollection = { emptyCollection := { ctx := [] } }
 
instance
LO.System.FiniteContext.instMembership
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Membership F (FiniteContext F 𝓢)
Equations
- LO.System.FiniteContext.instMembership = { mem := fun (Γ : LO.System.FiniteContext F 𝓢) (x : F) => x ∈ Γ.ctx }
 
instance
LO.System.FiniteContext.instHasSubset
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
HasSubset (FiniteContext F 𝓢)
Equations
- LO.System.FiniteContext.instHasSubset = { Subset := fun (x1 x2 : LO.System.FiniteContext F 𝓢) => x1.ctx ⊆ x2.ctx }
 
instance
LO.System.FiniteContext.instCons
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Cons F (FiniteContext F 𝓢)
Equations
- LO.System.FiniteContext.instCons = { cons := fun (x1 : F) (x2 : LO.System.FiniteContext F 𝓢) => { ctx := x1 :: x2.ctx } }
 
theorem
LO.System.FiniteContext.mem_def
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
{φ : F}
{Γ : FiniteContext F 𝓢}
 :
@[simp]
instance
LO.System.FiniteContext.instCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Collection F (FiniteContext F 𝓢)
Equations
instance
LO.System.FiniteContext.inst
{F : Type u_1}
{S : Type u_2}
[System F S]
[LogicalConnective F]
(𝓢 : S)
 :
System F (FiniteContext F 𝓢)
Equations
- LO.System.FiniteContext.inst 𝓢 = { Prf := fun (x1 : LO.System.FiniteContext F 𝓢) (x2 : F) => 𝓢 ⊢ x1.conj ➝ x2 }
 
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
theorem
LO.System.FiniteContext.system_def
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
(φ : F)
 :
def
LO.System.FiniteContext.ofDef
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
(b : 𝓢 ⊢ ⋀Γ ➝ φ)
 :
Equations
Instances For
def
LO.System.FiniteContext.toDef
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
(b : Γ ⊢[𝓢] φ)
 :
Equations
Instances For
instance
LO.System.FiniteContext.instAxiomatizedOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[DecidableEq F]
 :
Axiomatized (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
 
instance
LO.System.FiniteContext.instCompact
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
 :
Compact (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
 
def
LO.System.FiniteContext.nthAxm
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{Γ : List F}
(n : ℕ)
(h : n < Γ.length := by simp)
 :
Equations
Instances For
theorem
LO.System.FiniteContext.nth_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{Γ : List F}
(n : ℕ)
(h : n < Γ.length := by simp)
 :
def
LO.System.FiniteContext.byAxm
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
[DecidableEq F]
{φ : F}
(h : φ ∈ Γ := by simp)
 :
Equations
Instances For
theorem
LO.System.FiniteContext.by_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
[DecidableEq F]
{φ : F}
(h : φ ∈ Γ := by simp)
 :
def
LO.System.FiniteContext.weakening
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ Δ : List F}
[System.Minimal 𝓢]
[DecidableEq F]
(h : Γ ⊆ Δ)
{φ : F}
 :
Instances For
theorem
LO.System.FiniteContext.weakening!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ Δ : List F}
[System.Minimal 𝓢]
[DecidableEq F]
(h : Γ ⊆ Δ)
{φ : F}
 :
def
LO.System.FiniteContext.of
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢ φ)
 :
Equations
Instances For
def
LO.System.FiniteContext.emptyPrf
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ : F}
 :
Equations
Instances For
def
LO.System.FiniteContext.provable_iff_provable
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ : F}
 :
Equations
- ⋯ = ⋯
 
Instances For
theorem
LO.System.FiniteContext.of'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢! φ)
 :
def
LO.System.FiniteContext.id
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ : F}
 :
Equations
Instances For
@[simp]
theorem
LO.System.FiniteContext.id!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ : F}
 :
def
LO.System.FiniteContext.byAxm₀
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ : F}
 :
Instances For
theorem
LO.System.FiniteContext.by_axm₀!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ : F}
 :
def
LO.System.FiniteContext.byAxm₁
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ : F}
 :
Instances For
theorem
LO.System.FiniteContext.by_axm₁!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ : F}
 :
def
LO.System.FiniteContext.byAxm₂
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ χ : F}
 :
Instances For
theorem
LO.System.FiniteContext.by_axm₂!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ χ : F}
 :
instance
LO.System.FiniteContext.instModusPonens
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instModusPonens = { mdp := fun {φ ψ : F} => LO.System.mdp₁ }
 
instance
LO.System.FiniteContext.instHasAxiomVerum
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomVerum = { verum := LO.System.FiniteContext.of LO.System.verum }
 
instance
LO.System.FiniteContext.instHasAxiomImply₁
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomImply₁ = { imply₁ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.imply₁ }
 
instance
LO.System.FiniteContext.instHasAxiomImply₂
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomImply₂ = { imply₂ := fun (x x_1 x_2 : F) => LO.System.FiniteContext.of LO.System.imply₂ }
 
instance
LO.System.FiniteContext.instHasAxiomAndElim
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomAndElim = { and₁ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.and₁, and₂ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.and₂ }
 
instance
LO.System.FiniteContext.instHasAxiomAndInst
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomAndInst = { and₃ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.and₃ }
 
instance
LO.System.FiniteContext.instHasAxiomOrInst
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomOrInst = { or₁ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.or₁, or₂ := fun (x x_1 : F) => LO.System.FiniteContext.of LO.System.or₂ }
 
instance
LO.System.FiniteContext.instHasAxiomOrElim
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomOrElim = { or₃ := fun (x x_1 x_2 : F) => LO.System.FiniteContext.of LO.System.or₃ }
 
instance
LO.System.FiniteContext.instNegationEquiv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instNegationEquiv = { neg_equiv := fun (x : F) => LO.System.FiniteContext.of LO.System.neg_equiv }
 
instance
LO.System.FiniteContext.instMinimal
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instMinimal = LO.System.Minimal.mk
 
def
LO.System.FiniteContext.mdp'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ Δ : List F}
[System.Minimal 𝓢]
{φ ψ : F}
[DecidableEq F]
(bΓ : Γ ⊢[𝓢] φ ➝ ψ)
(bΔ : Δ ⊢[𝓢] φ)
 :
Equations
- LO.System.FiniteContext.mdp' bΓ bΔ = LO.System.wk ⋯ bΓ⨀LO.System.wk ⋯ bΔ
 
Instances For
def
LO.System.FiniteContext.deduct
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
 :
Equations
- One or more equations did not get rendered due to their size.
 - LO.System.FiniteContext.deduct = fun (b : [φ] ⊢[𝓢] ψ) => LO.System.FiniteContext.ofDef (LO.System.imply₁' (LO.System.FiniteContext.toDef b))
 
Instances For
theorem
LO.System.FiniteContext.deduct!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ : F}
(h : (φ :: Γ) ⊢[𝓢]! ψ)
 :
def
LO.System.FiniteContext.deductInv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
 :
Equations
- One or more equations did not get rendered due to their size.
 - LO.System.FiniteContext.deductInv = fun (b : [] ⊢[𝓢] φ ➝ ψ) => LO.System.FiniteContext.ofDef (LO.System.FiniteContext.toDef b⨀LO.System.verum)
 
Instances For
theorem
LO.System.FiniteContext.deductInv!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
{Γ : List F}
[System.Minimal 𝓢]
{φ ψ : F}
(h : Γ ⊢[𝓢]! φ ➝ ψ)
 :
theorem
LO.System.FiniteContext.deduct_iff
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
 :
def
LO.System.FiniteContext.deduct'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
 :
Equations
Instances For
theorem
LO.System.FiniteContext.deduct'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
(h : [φ] ⊢[𝓢]! ψ)
 :
def
LO.System.FiniteContext.deductInv'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
 :
Equations
Instances For
theorem
LO.System.FiniteContext.deductInv'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ➝ ψ)
 :
instance
LO.System.FiniteContext.deduction
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
 :
Deduction (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
 
instance
LO.System.FiniteContext.instStrongCutOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[DecidableEq F]
 :
StrongCut (FiniteContext F 𝓢) (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
 
instance
LO.System.FiniteContext.instHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomEFQ = { efq := fun (x : F) => LO.System.FiniteContext.of LO.System.efq }
 
instance
LO.System.FiniteContext.instDeductiveExplosionOfHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
 :
instance
LO.System.FiniteContext.instIntuitionistic
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[System.Intuitionistic 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instIntuitionistic = LO.System.Intuitionistic.mk
 
instance
LO.System.FiniteContext.instHasAxiomDNE
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[HasAxiomDNE 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instHasAxiomDNE = { dne := fun (φ : F) => LO.System.FiniteContext.of (LO.System.HasAxiomDNE.dne φ) }
 
instance
LO.System.FiniteContext.instClassical
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[System F S]
[LogicalConnective F]
[System.Minimal 𝓢]
[System.Classical 𝓢]
(Γ : FiniteContext F 𝓢)
 :
Equations
- Γ.instClassical = LO.System.Classical.mk
 
Equations
- LO.System.Context.instCoeSet = { coe := LO.System.Context.mk }
 
instance
LO.System.Context.instEmptyCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
EmptyCollection (Context F 𝓢)
Equations
- LO.System.Context.instEmptyCollection = { emptyCollection := { ctx := ∅ } }
 
instance
LO.System.Context.instMembership
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Membership F (Context F 𝓢)
Equations
- LO.System.Context.instMembership = { mem := fun (Γ : LO.System.Context F 𝓢) (x : F) => x ∈ Γ.ctx }
 
Equations
- LO.System.Context.instHasSubset = { Subset := fun (x1 x2 : LO.System.Context F 𝓢) => x1.ctx ⊆ x2.ctx }
 
Equations
- LO.System.Context.instCons = { cons := fun (x1 : F) (x2 : LO.System.Context F 𝓢) => { ctx := insert x1 x2.ctx } }
 
@[simp]
instance
LO.System.Context.instCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
 :
Collection F (Context F 𝓢)
Equations
instance
LO.System.Context.inst
{F : Type u_1}
{S : Type u_2}
[LogicalConnective F]
[System F S]
(𝓢 : S)
 :
Equations
- LO.System.Context.inst 𝓢 = { Prf := LO.System.Context.Proof }
 
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
instance
LO.System.Context.instAxiomatizedOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[DecidableEq F]
 :
Axiomatized (Context F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
 
instance
LO.System.Context.instCompact
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
 :
Equations
- One or more equations did not get rendered due to their size.
 
def
LO.System.Context.deduct
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[DecidableEq F]
{φ ψ : F}
{Γ : Set F}
 :
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
def
LO.System.Context.deductInv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ ψ : F}
{Γ : Set F}
 :
Equations
- LO.System.Context.deductInv { ctx := Δ, subset := h, prf := b } = { ctx := φ :: Δ, subset := ⋯, prf := LO.System.FiniteContext.deductInv b }
 
Instances For
instance
LO.System.Context.deduction
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[DecidableEq F]
 :
Equations
- One or more equations did not get rendered due to their size.
 
def
LO.System.Context.of
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{Γ : Set F}
{φ : F}
(b : 𝓢 ⊢ φ)
 :
Equations
- LO.System.Context.of b = { ctx := [], subset := ⋯, prf := LO.System.FiniteContext.of b }
 
Instances For
theorem
LO.System.Context.of!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ : F}
{Γ : Set F}
(b : 𝓢 ⊢! φ)
 :
def
LO.System.Context.mdp
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ ψ : F}
[DecidableEq F]
{Γ : Set F}
(bpq : Γ *⊢[𝓢] φ ➝ ψ)
(bp : Γ *⊢[𝓢] φ)
 :
Equations
- LO.System.Context.mdp bpq bp = { ctx := bpq.ctx ++ bp.ctx, subset := ⋯, prf := LO.System.FiniteContext.mdp' bpq.prf bp.prf }
 
Instances For
theorem
LO.System.Context.by_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{Γ : Set F}
{φ : F}
[DecidableEq F]
(h : φ ∈ Γ)
 :
def
LO.System.Context.emptyPrf
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ : F}
 :
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
theorem
LO.System.Context.emptyPrf!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ : F}
 :
theorem
LO.System.Context.provable_iff_provable
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
{φ : F}
 :
instance
LO.System.Context.minimal
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[DecidableEq F]
(Γ : Context F 𝓢)
 :
Equations
- Γ.minimal = LO.System.Minimal.mk
 
instance
LO.System.Context.instHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
(Γ : Context F 𝓢)
 :
Equations
- Γ.instHasAxiomEFQ = { efq := fun (x : F) => LO.System.Context.of LO.System.efq }
 
instance
LO.System.Context.instHasAxiomDNE
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[HasAxiomDNE 𝓢]
(Γ : Context F 𝓢)
 :
Equations
- Γ.instHasAxiomDNE = { dne := fun (φ : F) => LO.System.Context.of (LO.System.HasAxiomDNE.dne φ) }
 
instance
LO.System.Context.instDeductiveExplosionFiniteContextOfHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[System.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
 :
instance
LO.System.Context.instIntuitionisticOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[DecidableEq F]
[System.Intuitionistic 𝓢]
(Γ : Context F 𝓢)
 :
Equations
- Γ.instIntuitionisticOfDecidableEq = LO.System.Intuitionistic.mk
 
instance
LO.System.Context.instClassicalOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[System F S]
[DecidableEq F]
[System.Classical 𝓢]
(Γ : Context F 𝓢)
 :
Equations
- Γ.instClassicalOfDecidableEq = LO.System.Classical.mk