Documentation

Incompleteness.DC.Basic

Instances
@[reducible, inline]
Equations
  • =
theorem LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.D2 {L : Language} {inst✝ : Semiterm.Operator.GoedelNumber L (Sentence L)} {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [self : 𝔅.HBL2] {σ τ : Sentence L} :
T₀ ⊢!. 𝔅 (σ τ) 𝔅 σ 𝔅 τ

Alias of LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.HBL2.D2.

theorem LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.D3 {L : Language} {inst✝ : Semiterm.Operator.GoedelNumber L (Sentence L)} {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [self : 𝔅.HBL3] {σ : Sentence L} :
T₀ ⊢!. 𝔅 σ 𝔅 (𝔅 σ)

Alias of LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.HBL3.D3.

theorem LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.FLT {L : Language} {inst✝ : Semiterm.Operator.GoedelNumber L (Sentence L)} {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [self : 𝔅.FormalizedLoeb] {σ : Sentence L} :
T₀ ⊢!. 𝔅 (𝔅 σ σ) 𝔅 σ

Alias of LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.FormalizedLoeb.FLT.

Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.D2_shift {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} [T₀ T] {𝔅 : ProvabilityPredicate T₀ T} {σ τ : Sentence L} [𝔅.HBL2] :
T ⊢!. 𝔅 (σ τ) 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.D3_shift {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} [T₀ T] {𝔅 : ProvabilityPredicate T₀ T} {σ : Sentence L} [𝔅.HBL3] :
T ⊢!. 𝔅 σ 𝔅 (𝔅 σ)
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.FLT_shift {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} [T₀ T] {𝔅 : ProvabilityPredicate T₀ T} {σ : Sentence L} [𝔅.FormalizedLoeb] :
T ⊢!. 𝔅 (𝔅 σ σ) 𝔅 σ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.D2' {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} {σ τ : Sentence L} [𝔅.HBL2] [System.ModusPonens T] :
T₀ ⊢!. 𝔅 (σ τ)T₀ ⊢!. 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.prov_distribute_imply {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] {σ τ : Sentence L} (h : T ⊢!. σ τ) :
T₀ ⊢!. 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.prov_distribute_iff {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] {σ τ : Sentence L} (h : T ⊢!. σ τ) :
T₀ ⊢!. 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.prov_distribute_and {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] [L.DecidableEq] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] {σ τ : Sentence L} :
T₀ ⊢!. 𝔅 (σ τ) 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.prov_distribute_and' {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] [L.DecidableEq] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] {σ τ : Sentence L} :
T₀ ⊢!. 𝔅 (σ τ)T₀ ⊢!. 𝔅 σ 𝔅 τ
Equations
  • =
def LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate.prov_collect_and {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] {σ τ : Sentence L} :
T₀ ⊢!. 𝔅 σ 𝔅 τ 𝔅 (σ τ)
Equations
  • =
theorem LO.FirstOrder.DerivabilityCondition.goedel_spec {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [Diagonalization T₀] :
T₀ ⊢!. 𝔅.goedel 𝔅 𝔅.goedel
theorem LO.FirstOrder.DerivabilityCondition.unrefutable_goedel {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [System.Consistent T] [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [𝔅.GoedelSound] :
T ⊬. 𝔅.goedel
theorem LO.FirstOrder.DerivabilityCondition.goedel_independent {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [System.Consistent T] [L.DecidableEq] [𝔅.GoedelSound] :
System.Undecidable T 𝔅.goedel
theorem LO.FirstOrder.DerivabilityCondition.formalized_consistent_of_existance_unprovable {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [L.DecidableEq] [𝔅.HBL] {σ : Sentence L} :
T₀ ⊢!. 𝔅 σ 𝔅.con
theorem LO.FirstOrder.DerivabilityCondition.formalized_unprovable_goedel {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [L.DecidableEq] [𝔅.HBL] [T₀ T] [Diagonalization T₀] :
T ⊢!. 𝔅.con 𝔅 𝔅.goedel

Formalized First Incompleteness Theorem

theorem LO.FirstOrder.DerivabilityCondition.iff_goedel_consistency {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [L.DecidableEq] [𝔅.HBL] [T₀ T] [Diagonalization T₀] :
T ⊢!. 𝔅.goedel 𝔅.con
theorem LO.FirstOrder.DerivabilityCondition.unprovable_consistency {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [L.DecidableEq] [𝔅.HBL] [T₀ T] [Diagonalization T₀] [System.Consistent T] :
T ⊬. 𝔅.con
theorem LO.FirstOrder.DerivabilityCondition.unrefutable_consistency {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [L.DecidableEq] [𝔅.HBL] [T₀ T] [Diagonalization T₀] [System.Consistent T] [𝔅.GoedelSound] :
T ⊬. 𝔅.con
theorem LO.FirstOrder.DerivabilityCondition.kreisel_spec {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [𝔅.HBL] [Diagonalization T₀] (σ : Sentence L) :
T₀ ⊢!. 𝔅.kreisel σ (𝔅 (𝔅.kreisel σ) σ)
theorem LO.FirstOrder.DerivabilityCondition.loeb_theorm {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [𝔅.HBL] {σ : Sentence L} (H : T ⊢!. 𝔅 σ σ) :
T ⊢!. σ
instance LO.FirstOrder.DerivabilityCondition.instLoeb {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [𝔅.HBL] :
𝔅.Loeb
theorem LO.FirstOrder.DerivabilityCondition.formalized_loeb_theorem {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [𝔅.HBL] {σ : Sentence L} [L.DecidableEq] :
T₀ ⊢!. 𝔅 (𝔅 σ σ) 𝔅 σ
instance LO.FirstOrder.DerivabilityCondition.instFormalizedLoebOfDecidableEq {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [Diagonalization T₀] [𝔅.HBL] [L.DecidableEq] :
𝔅.FormalizedLoeb
theorem LO.FirstOrder.DerivabilityCondition.formalized_unprovable_not_consistency {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [System.Consistent T] [L.DecidableEq] [Diagonalization T₀] [T₀ T] [𝔅.HBL] [𝔅.GoedelSound] :
T ⊬. 𝔅.con 𝔅 (𝔅.con)
theorem LO.FirstOrder.DerivabilityCondition.formalized_unrefutable_goedel {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [System.Consistent T] [L.DecidableEq] [Diagonalization T₀] [T₀ T] [𝔅.HBL] [𝔅.GoedelSound] :
T ⊬. 𝔅.con 𝔅 (𝔅.goedel)
theorem LO.FirstOrder.DerivabilityCondition.rosser_spec {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [Diagonalization T₀] [𝔅.Rosser] :
T₀ ⊢!. 𝔅.rosser 𝔅 𝔅.rosser
theorem LO.FirstOrder.DerivabilityCondition.kriesel_remark {L : Language} [Semiterm.Operator.GoedelNumber L (Sentence L)] {T₀ T : Theory L} {𝔅 : ProvabilityPredicate T₀ T} [T₀ T] [𝔅.Rosser] :
T ⊢!. 𝔅.con

If 𝔅 satisfies Rosser provability condition, then 𝔅.con is provable in T.