Mapping modal prop vars to first-order sentence
Equations
- LO.ProvabilityLogic.Realization α L = (α → LO.FirstOrder.Sentence L)
Instances For
def
LO.ProvabilityLogic.Realization.interpret
{L : LO.FirstOrder.Language}
{α : Type u}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
(f : LO.ProvabilityLogic.Realization α L)
(𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U)
:
Mapping modal formulae to first-order sentence
Equations
Instances For
class
LO.ProvabilityLogic.ArithmeticalSound
{L : LO.FirstOrder.Language}
{α : Type u}
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
(Λ : LO.Modal.Hilbert α)
(𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U)
:
- sound : ∀ {p : LO.Modal.Formula α}, Λ ⊢! p → ∀ {f : LO.ProvabilityLogic.Realization α L}, U ⊢!. f.interpret 𝔅 p
Instances
theorem
LO.ProvabilityLogic.ArithmeticalSound.sound
{L : LO.FirstOrder.Language}
{α : Type u}
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
{Λ : LO.Modal.Hilbert α}
{𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U}
[self : LO.ProvabilityLogic.ArithmeticalSound Λ 𝔅]
{p : LO.Modal.Formula α}
:
Λ ⊢! p → ∀ {f : LO.ProvabilityLogic.Realization α L}, U ⊢!. f.interpret 𝔅 p
class
LO.ProvabilityLogic.ArithmeticalComplete
{L : LO.FirstOrder.Language}
{α : Type u}
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
(Λ : LO.Modal.Hilbert α)
(𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U)
:
- complete : ∀ {p : LO.Modal.Formula α}, (∀ {f : LO.ProvabilityLogic.Realization α L}, U ⊢!. f.interpret 𝔅 p) → Λ ⊢! p
Instances
theorem
LO.ProvabilityLogic.ArithmeticalComplete.complete
{L : LO.FirstOrder.Language}
{α : Type u}
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
{Λ : LO.Modal.Hilbert α}
{𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U}
[self : LO.ProvabilityLogic.ArithmeticalComplete Λ 𝔅]
{p : LO.Modal.Formula α}
:
(∀ {f : LO.ProvabilityLogic.Realization α L}, U ⊢!. f.interpret 𝔅 p) → Λ ⊢! p
theorem
LO.ProvabilityLogic.arithmetical_soundness_N
{α : Type u}
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
[DecidableEq (LO.FirstOrder.Sentence L)]
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[T ≼ U]
{𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U}
{p : LO.Modal.Formula α}
(h : 𝐍 ⊢! p)
{f : LO.ProvabilityLogic.Realization α L}
:
U ⊢!. f.interpret 𝔅 p
theorem
LO.ProvabilityLogic.arithmetical_soundness_GL
{α : Type u}
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L (LO.FirstOrder.Sentence L)]
[DecidableEq (LO.FirstOrder.Sentence L)]
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[T ≼ U]
[LO.FirstOrder.DerivabilityCondition.Diagonalization T]
{𝔅 : LO.FirstOrder.DerivabilityCondition.ProvabilityPredicate T U}
{p : LO.Modal.Formula α}
[𝔅.HBL]
(h : 𝐆𝐋 ⊢! p)
{f : LO.ProvabilityLogic.Realization α L}
:
U ⊢!. f.interpret 𝔅 p
instance
LO.ProvabilityLogic.instArithmeticalSoundGLStandardDP
{α : Type u}
(T : LO.FirstOrder.Theory ℒₒᵣ)
[𝐈𝚺₁ ≼ T]
[T.Delta1Definable]
:
LO.ProvabilityLogic.ArithmeticalSound 𝐆𝐋 (T.standardDP T)
Equations
- LO.ProvabilityLogic.instArithmeticalSoundGLStandardDP T = { sound := ⋯ }