Equations
- ⋯ = ⋯
@[reducible, inline]
Equations
- LO.Modal.Hilbert.ExtK Ax = { axioms := 𝗞 ∪ Ax, rules := ⟮Nec⟯ }
Instances For
instance
LO.Modal.Hilbert.instIsNormalExtK
{α✝ : Type u_1}
{Ax : LO.Modal.Theory α✝}
:
(LO.Modal.Hilbert.ExtK Ax).IsNormal
Equations
- ⋯ = ⋯
theorem
LO.Modal.Hilbert.ExtK.def_ax
{α : Type u_1}
{Ax : LO.Modal.Theory α}
:
(LO.Modal.Hilbert.ExtK Ax).axioms = 𝗞 ∪ Ax
theorem
LO.Modal.Hilbert.ExtK.maxm!
{α : Type u_1}
{Ax : LO.Modal.Theory α}
{φ : LO.Modal.Formula α}
(h : φ ∈ Ax)
:
LO.Modal.Hilbert.ExtK Ax ⊢! φ
@[simp]
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instKTFormulaKT α = LO.System.KT.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instKBFormulaKB α = LO.System.KB.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instKDFormulaKD α = LO.System.KD.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instKPFormulaKP α = LO.System.KP.mk
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instK4FormulaK4 α = LO.System.K4.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instK5FormulaK5 α = LO.System.K5.mk
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
- LO.Modal.Hilbert.ExtS4 Ax = LO.Modal.Hilbert.ExtK (𝗧 ∪ 𝟰 ∪ Ax)
Instances For
Equations
- LO.Modal.Hilbert.ExtS4.instS4Formula = LO.System.S4.mk
@[simp]
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instS4Dot2FormulaS4Dot2 α = LO.System.S4Dot2.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instS4Dot3FormulaS4Dot3 α = LO.System.S4Dot3.mk
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instS5FormulaS5 α = LO.System.S5.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instTrivFormulaTriv α = LO.System.Triv.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instVerFormulaVer α = LO.System.Ver.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instGLFormulaGL α = LO.System.GL.mk
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instGrzFormulaGrz α = LO.System.Grz.mk
@[reducible, inline]
Solovey's Provability Logic of True Arithmetic. Remark necessitation is not permitted.
Equations
- LO.Modal.Hilbert.GLS α = { axioms := (LO.Modal.Hilbert.GL α).theorems ∪ 𝗧, rules := ∅ }
Instances For
Equations
- LO.Modal.Hilbert.instHasAxiomKFormulaGLS α = { K := fun (x x_1 : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
Equations
- LO.Modal.Hilbert.instHasAxiomLFormulaGLS α = { L := fun (x : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
Equations
- LO.Modal.Hilbert.instHasAxiomTFormulaGLS α = { T := fun (x : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
@[reducible, inline]
Logic of Pure Necessitation
Equations
- LO.Modal.Hilbert.N α = { axioms := ∅, rules := ⟮Nec⟯ }
Instances For
Equations
- ⋯ = ⋯