def
LO.System.goedel2
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.System.goedel2!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
def
LO.System.goedel2'.mp
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
Equations
- LO.System.goedel2'.mp h = LO.System.andβ' LO.System.goedel2β¨h
Instances For
def
LO.System.goedel2'.mpr
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
Equations
- LO.System.goedel2'.mpr h = LO.System.andβ' LO.System.goedel2β¨h
Instances For
theorem
LO.System.goedel2'!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
def
LO.System.GL.axiomFour
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
{Ο : F}
:
π’ β’ LO.Axioms.Four Ο
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.System.GL.instHasAxiomFour
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
Equations
- LO.System.GL.instHasAxiomFour = { Four := fun (x : F) => LO.System.GL.axiomFour }
instance
LO.System.GL.instK4
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
LO.System.K4 π’
Equations
- LO.System.GL.instK4 = LO.System.K4.mk
def
LO.System.GL.axiomH
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
{Ο : F}
:
π’ β’ LO.Axioms.H Ο
Equations
- LO.System.GL.axiomH = LO.System.impTrans'' (LO.System.implyBoxDistribute' LO.System.andβ) LO.System.axiomL
Instances For
instance
LO.System.GL.instHasAxiomH
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
{π’ : S}
[LO.System.GL π’]
:
LO.System.HasAxiomH π’
Equations
- LO.System.GL.instHasAxiomH = { H := fun (x : F) => LO.System.GL.axiomH }