Documentation

Foundation.Modal.Hilbert.Equiv.GL

class LO.System.K4Loeb {S : Type u_1} {F : Type u_2} [LO.BasicModalLogicalConnective F] [LO.System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.LoebRule 𝓢 :
Type (max u_2 u_3)
Instances
    def LO.System.K4Loeb.axiomL {S : Type u_1} {F : Type u_2} [LO.BasicModalLogicalConnective F] [DecidableEq F] [LO.System F S] {𝓢 : S} [LO.System.K4Loeb 𝓢] {φ : F} :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • LO.System.K4Loeb.instHasAxiomL = { L := fun (x : F) => LO.System.K4Loeb.axiomL }
      class LO.System.K4Henkin {S : Type u_1} {F : Type u_2} [LO.BasicModalLogicalConnective F] [LO.System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.HenkinRule 𝓢 :
      Type (max u_2 u_3)
      Instances
        Equations
        class LO.System.K4H {S : Type u_1} {F : Type u_2} [LO.BasicModalLogicalConnective F] [LO.System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.HasAxiomH 𝓢 :
        Type (max u_2 u_3)
        Instances
          Equations
          @[reducible, inline]
          Equations
          Instances For
            Equations
            • LO.Modal.Hilbert.instK4HFormulaK4H = LO.System.K4H.mk
            @[reducible, inline]
            Equations
            Instances For
              Equations
              • =
              Equations
              • =
              Equations
              • =
              Equations
              • LO.Modal.Hilbert.instK4LoebFormulaK4Loeb = LO.System.K4Loeb.mk
              @[reducible, inline]
              Equations
              Instances For
                Equations
                • =
                Equations
                • =
                Equations
                • =
                Equations
                • LO.Modal.Hilbert.instK4HenkinFormulaK4Henkin = LO.System.K4Henkin.mk