class
LO.System.K4Loeb
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K4 𝓢, LO.System.LoebRule 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
def
LO.System.K4Loeb.axiomL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{𝓢 : S}
[System.K4Loeb 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
instance
LO.System.K4Loeb.instHasAxiomL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[DecidableEq F]
[System F S]
{𝓢 : S}
[System.K4Loeb 𝓢]
:
Equations
- LO.System.K4Loeb.instHasAxiomL = { L := fun (x : F) => LO.System.K4Loeb.axiomL }
class
LO.System.K4Henkin
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K4 𝓢, LO.System.HenkinRule 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
instance
LO.System.K4Henkin.instLoebRule
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[System.K4Henkin 𝓢]
:
LoebRule 𝓢
Equations
- LO.System.K4Henkin.instLoebRule = { loeb := fun {φ : F} (h : 𝓢 ⊢ □φ ➝ φ) => h⨀LO.System.henkin (LO.System.iffIntro (LO.System.axiomK' (LO.System.nec h)) LO.System.axiomFour) }
class
LO.System.K4H
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
(𝓢 : S)
extends LO.System.K4 𝓢, LO.System.HasAxiomH 𝓢 :
Type (max u_2 u_3)
- verum : 𝓢 ⊢ Axioms.Verum
Instances
instance
LO.System.K4H.instHenkinRule
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[System F S]
{𝓢 : S}
[System.K4H 𝓢]
:
Equations
- LO.System.K4H.instHenkinRule = { henkin := fun {φ : F} (h : 𝓢 ⊢ □φ ⭤ φ) => LO.System.and₁' h⨀(LO.System.axiomH⨀LO.System.nec h) }
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
instance
LO.Modal.Hilbert.instHasNecessitationK4Loeb
{α : Type u_1}
:
(Hilbert.K4Loeb α).HasNecessitation
@[reducible, inline]
instance
LO.Modal.Hilbert.instHasNecessitationK4Henkin
{α : Type u_1}
:
(Hilbert.K4Henkin α).HasNecessitation
instance
LO.Modal.Hilbert.instHasHenkinRuleK4Henkin
{α : Type u_1}
:
(Hilbert.K4Henkin α).HasHenkinRule
theorem
LO.Modal.Hilbert.K4Henkin_weakerThan_GL
{α : Type u_1}
[DecidableEq α]
:
Hilbert.K4H α ≤ₛ Hilbert.GL α