Documentation

Foundation.Modal.Hilbert.Equiv.GL

class LO.System.K4Loeb {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.LoebRule 𝓢 :
Type (max u_2 u_3)
Instances
    def LO.System.K4Loeb.axiomL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓢 : S} [System.K4Loeb 𝓢] {φ : F} :
    𝓢 Axioms.L φ
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      class LO.System.K4Henkin {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.HenkinRule 𝓢 :
      Type (max u_2 u_3)
      Instances
        class LO.System.K4H {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] (𝓢 : S) extends LO.System.K4 𝓢, LO.System.HasAxiomH 𝓢 :
        Type (max u_2 u_3)
        Instances
          instance LO.System.K4H.instHenkinRule {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [System F S] {𝓢 : S} [System.K4H 𝓢] :
          Equations
          @[reducible, inline]
          abbrev LO.Modal.Hilbert.K4H (α : Type u_1) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev LO.Modal.Hilbert.K4Loeb (α : Type u_1) :
            Equations
            Instances For
              instance LO.Modal.Hilbert.instHasNecessitationK4Loeb {α : Type u_1} :
              (Hilbert.K4Loeb α).HasNecessitation
              @[reducible, inline]
              abbrev LO.Modal.Hilbert.K4Henkin (α : Type u_1) :
              Equations
              Instances For