def
LO.System.lem₁_diaT_of_S5Grz
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
{φ : F}
[LO.System.S5 𝓢]
:
Equations
- LO.System.lem₁_diaT_of_S5Grz = LO.System.impTrans'' (LO.System.rev_dhyp_imp' LO.System.diaDuality_mp) (LO.System.dhyp_imp' LO.System.diaDuality_mpr)
Instances For
def
LO.System.lem₂_diaT_of_S5Grz
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
{φ : F}
[LO.System.S5 𝓢]
:
Equations
- LO.System.lem₂_diaT_of_S5Grz = LO.System.dhyp_imp' LO.System.rm_diabox
Instances For
class
LO.System.S5Grz
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[LO.System F S]
(𝓢 : S)
extends LO.System.S5 𝓢, LO.System.HasAxiomGrz 𝓢 :
Type (max u_2 u_3)
- neg_equiv : (φ : F) → 𝓢 ⊢ LO.Axioms.NegEquiv φ
- imply₁ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.Imply₁ φ ψ
- imply₂ : (φ ψ χ : F) → 𝓢 ⊢ LO.Axioms.Imply₂ φ ψ χ
- and₁ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.AndElim₁ φ ψ
- and₂ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.AndElim₂ φ ψ
- and₃ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.AndInst φ ψ
- or₁ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.OrInst₁ φ ψ
- or₂ : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.OrInst₂ φ ψ
- or₃ : (φ ψ χ : F) → 𝓢 ⊢ LO.Axioms.OrElim φ ψ χ
- dne : (φ : F) → 𝓢 ⊢ LO.Axioms.DNE φ
- K : (φ ψ : F) → 𝓢 ⊢ LO.Axioms.K φ ψ
- dia_dual : (φ : F) → 𝓢 ⊢ LO.Axioms.DiaDuality φ
- T : (φ : F) → 𝓢 ⊢ LO.Axioms.T φ
- Five : (φ : F) → 𝓢 ⊢ LO.Axioms.Five φ
- Grz : (φ : F) → 𝓢 ⊢ LO.Axioms.Grz φ
Instances
def
LO.System.S5Grz.diaT
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.S5Grz 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.System.S5Grz.Tc
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.S5Grz 𝓢]
{φ : F}
:
Equations
- LO.System.S5Grz.Tc = LO.System.impTrans'' (LO.System.contra₃' (LO.System.impTrans'' (LO.System.and₂' LO.System.diaDuality) LO.System.S5Grz.diaT)) LO.System.box_dne
Instances For
instance
LO.System.S5Grz.instHasAxiomTc
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.S5Grz 𝓢]
:
Equations
- LO.System.S5Grz.instHasAxiomTc = { Tc := fun (x : F) => LO.System.S5Grz.Tc }
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.instS5GrzFormulaS5Grz = LO.System.S5Grz.mk