Documentation

Foundation.Modal.Kripke.Completeness

@[reducible, inline]
Equations
Instances For
    @[simp]
    theorem LO.Modal.Hilbert.Kripke.canonicalFrame.rel_def_box {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World} :
    Ω₁ Ω₂ ∀ {φ : LO.Modal.Formula }, φ Ω₁.theoryφ Ω₂.theory
    theorem LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multibox {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World} {n : } :
    Ω₁ ≺^[n] Ω₂ ∀ {φ : LO.Modal.Formula }, □^[n]φ Ω₁.theoryφ Ω₂.theory
    theorem LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multibox' {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World} {n : } :
    Ω₁ ≺^[n] Ω₂ ∀ {φ : LO.Modal.Formula }, φ □''⁻¹^[n]Ω₁.theoryφ Ω₂.theory
    theorem LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multidia {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World} {n : } :
    Ω₁ ≺^[n] Ω₂ ∀ {φ : LO.Modal.Formula }, φ Ω₂.theory◇^[n]φ Ω₁.theory
    theorem LO.Modal.Hilbert.Kripke.canonicalFrame.rel_def_dia {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World} :
    Ω₁ Ω₂ ∀ {φ : LO.Modal.Formula }, φ Ω₂.theoryφ Ω₁.theory
    @[reducible, inline]
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible]
      Equations
      • LO.Modal.Hilbert.Kripke.instSemanticsFormulaNatWorldCanonicalModel = LO.Modal.Formula.Kripke.Satisfies.semantics
      theorem LO.Modal.Hilbert.Kripke.truthlemma {H : LO.Modal.Hilbert } [H.IsNormal] [H.Consistent] {φ : LO.Modal.Formula } {Ω : (LO.Modal.Hilbert.Kripke.canonicalModel H).World} :
      Ω φ φ Ω.theory