@[reducible, inline]
abbrev
LO.Modal.Hilbert.Kripke.canonicalFrame
(H : LO.Modal.Hilbert ℕ)
[H.IsNormal]
[H.Consistent]
:
Equations
- LO.Modal.Hilbert.Kripke.canonicalFrame H = LO.Modal.Kripke.Frame.mk (LO.Modal.MCT H) fun (Ω₁ Ω₂ : LO.Modal.MCT H) => □''⁻¹Ω₁.theory ⊆ Ω₂.theory
Instances For
@[simp]
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.rel_def_box
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World}
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multibox
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World}
{n : ℕ}
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multibox'
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World}
{n : ℕ}
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.multirel_def_multidia
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World}
{n : ℕ}
:
theorem
LO.Modal.Hilbert.Kripke.canonicalFrame.rel_def_dia
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{Ω₁ Ω₂ : (LO.Modal.Hilbert.Kripke.canonicalFrame H).World}
:
@[reducible, inline]
abbrev
LO.Modal.Hilbert.Kripke.canonicalModel
(H : LO.Modal.Hilbert ℕ)
[H.IsNormal]
[H.Consistent]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible]
instance
LO.Modal.Hilbert.Kripke.instSemanticsFormulaNatWorldCanonicalModel
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
:
Equations
- LO.Modal.Hilbert.Kripke.instSemanticsFormulaNatWorldCanonicalModel = LO.Modal.Formula.Kripke.Satisfies.semantics
theorem
LO.Modal.Hilbert.Kripke.truthlemma
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{φ : LO.Modal.Formula ℕ}
{Ω : (LO.Modal.Hilbert.Kripke.canonicalModel H).World}
:
theorem
LO.Modal.Hilbert.Kripke.iff_valid_on_canonicalModel_deducible
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{φ : LO.Modal.Formula ℕ}
:
LO.Modal.Hilbert.Kripke.canonicalModel H ⊧ φ ↔ H ⊢! φ
theorem
LO.Modal.Hilbert.Kripke.realize_axiomset_of_self_canonicalModel
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
:
LO.Modal.Hilbert.Kripke.canonicalModel H ⊧* H.axioms
theorem
LO.Modal.Hilbert.Kripke.realize_theory_of_self_canonicalModel
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
:
theorem
LO.Modal.Hilbert.Kripke.complete_of_canonical
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{φ : LO.Modal.Formula ℕ}
{C : LO.Modal.Kripke.FrameClass}
(hFC : LO.Modal.Hilbert.Kripke.canonicalFrame H ∈ C)
:
theorem
LO.Modal.Hilbert.Kripke.instCompleteOfCanonical
{H : LO.Modal.Hilbert ℕ}
[H.IsNormal]
[H.Consistent]
{C : LO.Modal.Kripke.FrameClass}
(hC : LO.Modal.Hilbert.Kripke.canonicalFrame H ∈ C)
:
LO.Complete H C