Documentation

Foundation.Modal.Kripke.Basic

@[reducible, inline]
abbrev LO.Modal.Kripke.Frame.Rel' {F : Frame} (x y : F.World) :
Equations
  • (x y) = F.Rel x y
@[reducible, inline]
abbrev LO.Modal.Kripke.Frame.RelItr' {F : Frame} (n : ) :
F.WorldF.WorldProp
Equations
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[simp]
theorem LO.Modal.Formula.Kripke.Satisfies.iff_models {M : Kripke.Model} {x : M.World} {φ : Formula } :
x φ Satisfies M x φ
@[simp]
theorem LO.Modal.Formula.Kripke.Satisfies.atom_def {M : Kripke.Model} {x : M.World} {a : } :
x atom a M.Val x a
theorem LO.Modal.Formula.Kripke.Satisfies.box_def {M : Kripke.Model} {x : M.World} {φ : Formula } :
x φ ∀ (y : M.World), x yy φ
theorem LO.Modal.Formula.Kripke.Satisfies.dia_def {M : Kripke.Model} {x : M.World} {φ : Formula } :
x φ ∃ (y : M.World), x y y φ
theorem LO.Modal.Formula.Kripke.Satisfies.imp_def {M : Kripke.Model} {x : M.World} {φ ψ : Formula } :
x φ ψ x φx ψ
theorem LO.Modal.Formula.Kripke.Satisfies.or_def {M : Kripke.Model} {x : M.World} {φ ψ : Formula } :
x φ ψ x φ x ψ
theorem LO.Modal.Formula.Kripke.Satisfies.and_def {M : Kripke.Model} {x : M.World} {φ ψ : Formula } :
x φ ψ x φ x ψ
theorem LO.Modal.Formula.Kripke.Satisfies.multibox_def {M : Kripke.Model} {x : M.World} {φ : Formula } {n : } :
x □^[n]φ ∀ {y : M.World}, x ≺^[n] yy φ
theorem LO.Modal.Formula.Kripke.Satisfies.multidia_def {M : Kripke.Model} {x : M.World} {φ : Formula } {n : } :
x ◇^[n]φ ∃ (y : M.World), x ≺^[n] y y φ
theorem LO.Modal.Formula.Kripke.Satisfies.trans {M : Kripke.Model} {x : M.World} {φ ψ χ : Formula } (hpq : x φ ψ) (hqr : x ψ χ) :
x φ χ
theorem LO.Modal.Formula.Kripke.Satisfies.mdp {M : Kripke.Model} {x : M.World} {φ ψ : Formula } (hpq : x φ ψ) (hp : x φ) :
x ψ
theorem LO.Modal.Formula.Kripke.Satisfies.not_imp {M : Kripke.Model} {x : M.World} {φ ψ : Formula } :
¬x φ ψ x φ ψ
theorem LO.Modal.Formula.Kripke.ValidOnModel.mdp {M : Kripke.Model} {φ ψ : Formula } (hpq : M φ ψ) (hp : M φ) :
M ψ
theorem LO.Modal.Formula.Kripke.ValidOnFrame.not_valid_iff_exists_valuation_world {F : Kripke.Frame} {φ : Formula } :
¬F φ ∃ (V : Kripke.Valuation F) (x : F.World), ¬Satisfies { toFrame := F, Val := V } x φ
theorem LO.Modal.Formula.Kripke.ValidOnFrame.mdp {F : Kripke.Frame} {φ ψ : Formula } (hpq : F φ ψ) (hp : F φ) :
F ψ
Equations
Equations
theorem LO.Modal.Kripke.FiniteFrameClass.definedBy_of_definedBy_frameclass_aux {C : FrameClass} {Ax : Theory } (h : C.DefinedBy Ax) :
C.restrictFinite.DefinedBy Ax
theorem LO.Modal.Kripke.FiniteFrameClass.definedBy_of_definedBy_frameclass {C : FrameClass} {FC : FiniteFrameClass} {Ax : Theory } (h : C.DefinedBy Ax) (e : FC = C.restrictFinite) :
FC.DefinedBy Ax
theorem LO.Modal.Hilbert.Kripke.instFiniteSound_of_instSound {H : Hilbert } {C : Kripke.FrameClass} {FC : Kripke.FiniteFrameClass} (heq : C.restrictFinite = FC) [sound : Sound H C] :
Sound H FC
theorem LO.Modal.Hilbert.Kripke.weakerThan_of_subset_FrameClass {Ax₁ Ax₂ : Theory } (C₁ C₂ : Kripke.FrameClass) [sound₁ : Sound (Hilbert.ExtK Ax₁) C₁] [complete₂ : Complete (Hilbert.ExtK Ax₂) C₂] (h𝔽 : C₂ C₁) :
theorem LO.Modal.Hilbert.Kripke.equiv_of_eq_FrameClass {Ax₁ Ax₂ : Theory } (C₁ C₂ : Kripke.FrameClass) [sound₁ : Sound (Hilbert.ExtK Ax₁) C₁] [sound₂ : Sound (Hilbert.ExtK Ax₂) C₂] [complete₁ : Complete (Hilbert.ExtK Ax₁) C₁] [complete₂ : Complete (Hilbert.ExtK Ax₂) C₂] (hC : C₁ = C₂) :