Documentation

Foundation.Modal.Kripke.Basic

  • World : Type
  • Rel : Rel self.World self.World
  • world_nonempty : Nonempty self.World
Instances For
    @[reducible, inline]
    Equations
    • (x y) = F.Rel x y
    Instances For
      @[reducible, inline]
      abbrev LO.Modal.Kripke.Frame.RelItr' {F : LO.Modal.Kripke.Frame} (n : ) :
      F.WorldF.WorldProp
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                Instances For
                  Equations
                  theorem LO.Modal.Formula.Kripke.Satisfies.box_def {M : LO.Modal.Kripke.Model} {x : M.World} {φ : LO.Modal.Formula } :
                  x φ ∀ (y : M.World), x yy φ
                  theorem LO.Modal.Formula.Kripke.Satisfies.dia_def {M : LO.Modal.Kripke.Model} {x : M.World} {φ : LO.Modal.Formula } :
                  x φ ∃ (y : M.World), x y y φ
                  theorem LO.Modal.Formula.Kripke.Satisfies.imp_def {M : LO.Modal.Kripke.Model} {x : M.World} {φ ψ : LO.Modal.Formula } :
                  x φ ψ x φx ψ
                  theorem LO.Modal.Formula.Kripke.Satisfies.multibox_def {M : LO.Modal.Kripke.Model} {x : M.World} {φ : LO.Modal.Formula } {n : } :
                  x □^[n]φ ∀ {y : M.World}, x ≺^[n] yy φ
                  theorem LO.Modal.Formula.Kripke.Satisfies.multidia_def {M : LO.Modal.Kripke.Model} {x : M.World} {φ : LO.Modal.Formula } {n : } :
                  x ◇^[n]φ ∃ (y : M.World), x ≺^[n] y y φ
                  theorem LO.Modal.Formula.Kripke.Satisfies.trans {M : LO.Modal.Kripke.Model} {x : M.World} {φ ψ χ : LO.Modal.Formula } (hpq : x φ ψ) (hqr : x ψ χ) :
                  x φ χ
                  theorem LO.Modal.Formula.Kripke.Satisfies.mdp {M : LO.Modal.Kripke.Model} {x : M.World} {φ ψ : LO.Modal.Formula } (hpq : x φ ψ) (hp : x φ) :
                  x ψ
                  theorem LO.Modal.Hilbert.Kripke.equiv_of_eq_FrameClass {Ax₁ Ax₂ : LO.Modal.Theory } (C₁ C₂ : LO.Modal.Kripke.FrameClass) [sound₁ : LO.Sound (LO.Modal.Hilbert.ExtK Ax₁) C₁] [sound₂ : LO.Sound (LO.Modal.Hilbert.ExtK Ax₂) C₂] [complete₁ : LO.Complete (LO.Modal.Hilbert.ExtK Ax₁) C₁] [complete₂ : LO.Complete (LO.Modal.Hilbert.ExtK Ax₂) C₂] (hC : C₁ = C₂) :