Documentation
Foundation
.
Vorspiel
.
RelItr
Search
return to top
source
Imports
Init
Foundation.Vorspiel.Vorspiel
Imported by
Foundation.Modal.Kripke.Basic
Foundation.Vorspiel.Geach
Rel
.
iterate
Rel
.
iterate
.
iff_zero
Rel
.
iterate
.
iff_succ
Rel
.
iterate
.
eq
Rel
.
iterate
.
forward
Rel
.
iterate
.
true_any
Rel
.
iterate
.
congr
Rel
.
iterate
.
comp
source
def
Rel
.
iterate
{α :
Type
u_1}
(R :
Rel
α
α
)
:
ℕ
→
α
→
α
→
Prop
Equations
R
.iterate
0
=
fun (
x1
x2
:
α
) =>
x1
=
x2
R
.iterate
n
.succ
=
fun (
x
y
:
α
) =>
∃ (
z
:
α
),
R
x
z
∧
R
.iterate
n
z
y
source
@[simp]
theorem
Rel
.
iterate
.
iff_zero
{α :
Type
u_1}
{R :
Rel
α
α
}
{x y :
α
}
:
R
.iterate
0
x
y
↔
x
=
y
source
@[simp]
theorem
Rel
.
iterate
.
iff_succ
{α :
Type
u_1}
{R :
Rel
α
α
}
{n :
ℕ
}
{x y :
α
}
:
R
.iterate
(
n
+
1
)
x
y
↔
∃ (
z
:
α
),
R
x
z
∧
R
.iterate
n
z
y
source
@[simp]
theorem
Rel
.
iterate
.
eq
{α :
Type
u_1}
{n :
ℕ
}
:
iterate
(fun (
x1
x2
:
α
) =>
x1
=
x2
)
n
=
fun (
x1
x2
:
α
) =>
x1
=
x2
source
theorem
Rel
.
iterate
.
forward
{α :
Type
u_1}
{R :
Rel
α
α
}
{n :
ℕ
}
{x y :
α
}
:
R
.iterate
(
n
+
1
)
x
y
↔
∃ (
z
:
α
),
R
.iterate
n
x
z
∧
R
z
y
source
theorem
Rel
.
iterate
.
true_any
{n :
ℕ
}
{α✝ :
Type
u_1}
{x y :
α✝
}
(h :
x
=
y
)
:
iterate
(fun (
x
x
:
α✝
) =>
True
)
n
x
y
source
theorem
Rel
.
iterate
.
congr
{α :
Type
u_1}
{R :
Rel
α
α
}
{n m :
ℕ
}
{x y :
α
}
(h :
R
.iterate
n
x
y
)
(he :
n
=
m
)
:
R
.iterate
m
x
y
source
theorem
Rel
.
iterate
.
comp
{α :
Type
u_1}
{R :
Rel
α
α
}
{n m :
ℕ
}
{x y :
α
}
:
(∃ (
z
:
α
),
R
.iterate
n
x
z
∧
R
.iterate
m
z
y
)
↔
R
.iterate
(
n
+
m
)
x
y