Documentation

Foundation.Modal.Hilbert.ConsistentTheory

@[reducible, inline]
Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      theorem LO.Modal.Theory.def_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} :
      LO.Modal.Theory.Consistent H T ∀ (Γ : List (LO.Modal.Formula α)), (∀ ψΓ, ψ T)Γ ⊬[H]
      theorem LO.Modal.Theory.def_inconsistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} :
      ¬LO.Modal.Theory.Consistent H T ∃ (Γ : List (LO.Modal.Formula α)), (∀ ψΓ, ψ T) Γ ⊢[H]!
      theorem LO.Modal.Theory.iff_insert_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} [DecidableEq α] {φ : LO.Modal.Formula α} :
      LO.Modal.Theory.Consistent H (insert φ T) ∀ {Γ : List (LO.Modal.Formula α)}, (∀ ψΓ, ψ T)H φ Γ
      theorem LO.Modal.Theory.iff_insert_inconsistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} [DecidableEq α] {φ : LO.Modal.Formula α} :
      ¬LO.Modal.Theory.Consistent H (insert φ T) ∃ (Γ : List (LO.Modal.Formula α)), (∀ φΓ, φ T) H ⊢! φ Γ
      theorem LO.Modal.Theory.not_singleton_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} [DecidableEq α] {φ : LO.Modal.Formula α} [H.HasNecessitation] (T_consis : LO.Modal.Theory.Consistent H T) (h : φ T) :
      theorem LO.Modal.Theory.intro_union_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} {T₁ T₂ : LO.Modal.Theory α} (h : ∀ {Γ₁ Γ₂ : List (LO.Modal.Formula α)}, ((∀ φΓ₁, φ T₁) φΓ₂, φ T₂)H Γ₁ Γ₂ ) :
      theorem LO.Modal.Theory.intro_triunion_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} [DecidableEq α] {T₁ T₂ T₃ : LO.Modal.Theory α} (h : ∀ {Γ₁ Γ₂ Γ₃ : List (LO.Modal.Formula α)}, ((∀ φΓ₁, φ T₁) (∀ φΓ₂, φ T₂) φΓ₃, φ T₃)H Γ₁ Γ₂ Γ₃ ) :
      theorem LO.Modal.Theory.not_mem_of_mem_neg {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} [DecidableEq α] {φ : LO.Modal.Formula α} (T_consis : LO.Modal.Theory.Consistent H T) (h : φ T) :
      φT
      theorem LO.Modal.Theory.not_mem_neg_of_mem {α : Type u_1} {H : LO.Modal.Hilbert α} {T : LO.Modal.Theory α} [DecidableEq α] {φ : LO.Modal.Formula α} (T_consis : LO.Modal.Theory.Consistent H T) (h : φ T) :
      φT
      structure LO.Modal.MaximalConsistentTheory {α : Type u_1} (H : LO.Modal.Hilbert α) :
      Type u_1
      Instances For
        theorem LO.Modal.MaximalConsistentTheory.either_mem {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} (Ω : LO.Modal.MCT H) (φ : LO.Modal.Formula α) :
        φ Ω.theory φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.maximal' {α : Type u_1} {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} (hp : φΩ.theory) :
        theorem LO.Modal.MaximalConsistentTheory.membership_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} :
        φ Ω.theory Ω.theory *⊢[H]! φ
        theorem LO.Modal.MaximalConsistentTheory.subset_axiomset {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} :
        H.axioms Ω.theory
        @[simp]
        theorem LO.Modal.MaximalConsistentTheory.not_mem_falsum {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} :
        Ω.theory
        @[simp]
        @[simp]
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_neg {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} :
        φ Ω.theory φΩ.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_negneg {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} :
        φ Ω.theory φ Ω.theory
        @[simp]
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_imp {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} :
        φ ψ Ω.theory φ Ω.theoryψ Ω.theory
        @[simp]
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_and {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} :
        φ ψ Ω.theory φ Ω.theory ψ Ω.theory
        @[simp]
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_or {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} :
        φ ψ Ω.theory φ Ω.theory ψ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_congr {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} :
        Ω.theory *⊢[H]! φ ψ(φ Ω.theory ψ Ω.theory)
        theorem LO.Modal.MaximalConsistentTheory.mem_dn_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} :
        φ Ω.theory φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.equality_def {α : Type u_1} {H : LO.Modal.Hilbert α} {Ω₁ Ω₂ : LO.Modal.MCT H} :
        Ω₁ = Ω₂ Ω₁.theory = Ω₂.theory
        theorem LO.Modal.MaximalConsistentTheory.intro_equality {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω₁ Ω₂ : LO.Modal.MCT H} {h : φΩ₁.theory, φ Ω₂.theory} :
        Ω₁ = Ω₂
        theorem LO.Modal.MaximalConsistentTheory.neg_imp {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω₁ Ω₂ : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} (h : ψ Ω₂.theoryφ Ω₁.theory) :
        φ Ω₁.theoryψ Ω₂.theory
        theorem LO.Modal.MaximalConsistentTheory.neg_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω₁ Ω₂ : LO.Modal.MCT H} {φ ψ : LO.Modal.Formula α} (h : φ Ω₁.theory ψ Ω₂.theory) :
        φ Ω₁.theory ψ Ω₂.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_multibox {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] {n : } :
        □^[n]φ Ω.theory ∀ {Ω' : LO.Modal.MCT H}, □''⁻¹^[n]Ω.theory Ω'.theoryφ Ω'.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_box {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] :
        φ Ω.theory ∀ {Ω' : LO.Modal.MCT H}, □''⁻¹Ω.theory Ω'.theoryφ Ω'.theory
        theorem LO.Modal.MaximalConsistentTheory.multibox_dn_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] {n : } :
        □^[n](φ) Ω.theory □^[n]φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.box_dn_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] :
        (φ) Ω.theory φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.mem_multibox_dual {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] {n : } :
        □^[n]φ Ω.theory ◇^[n](φ) Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.mem_box_dual {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] :
        φ Ω.theory (φ) Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.mem_multidia_dual {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] {n : } :
        ◇^[n]φ Ω.theory □^[n](φ) Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.mem_dia_dual {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] :
        φ Ω.theory (φ) Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_multidia {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] {n : } :
        ◇^[n]φ Ω.theory ∃ (Ω' : LO.Modal.MCT H), □''⁻¹^[n]Ω.theory Ω'.theory φ Ω'.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_dia {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {φ : LO.Modal.Formula α} [H.IsNormal] :
        φ Ω.theory ∃ (Ω' : LO.Modal.MCT H), □''⁻¹Ω.theory Ω'.theory φ Ω'.theory
        theorem LO.Modal.MaximalConsistentTheory.multibox_multidia {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω₁ Ω₂ : LO.Modal.MCT H} [H.IsNormal] {n : } :
        (∀ {φ : LO.Modal.Formula α}, □^[n]φ Ω₁.theoryφ Ω₂.theory) ∀ {φ : LO.Modal.Formula α}, φ Ω₂.theory◇^[n]φ Ω₁.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_conj {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} {Γ : List (LO.Modal.Formula α)} :
        Γ Ω.theory φΓ, φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_multibox_conj {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} [H.IsNormal] {Γ : List (LO.Modal.Formula α)} {n : } :
        □^[n]Γ Ω.theory φΓ, □^[n]φ Ω.theory
        theorem LO.Modal.MaximalConsistentTheory.iff_mem_box_conj {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {Ω : LO.Modal.MCT H} [H.IsNormal] {Γ : List (LO.Modal.Formula α)} :
        Γ Ω.theory φΓ, φ Ω.theory