@[reducible, inline]
Equations
- LO.Modal.Theory.Consistent H T = T *⊬[H] ⊥
Instances For
@[reducible, inline]
abbrev
LO.Modal.Theory.Inconsistent
{α : Type u_1}
(H : LO.Modal.Hilbert α)
(T : LO.Modal.Theory α)
:
Equations
Instances For
theorem
LO.Modal.Theory.def_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
:
LO.Modal.Theory.Consistent H T ↔ ∀ (Γ : List (LO.Modal.Formula α)), (∀ ψ ∈ Γ, ψ ∈ T) → Γ ⊬[H] ⊥
theorem
LO.Modal.Theory.def_inconsistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
:
¬LO.Modal.Theory.Consistent H T ↔ ∃ (Γ : List (LO.Modal.Formula α)), (∀ ψ ∈ Γ, ψ ∈ T) ∧ Γ ⊢[H]! ⊥
@[simp]
theorem
LO.Modal.Theory.self_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[H_consis : LO.System.Consistent H]
:
LO.Modal.Theory.Consistent H H.axioms
theorem
LO.Modal.Theory.union_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T₁ T₂ : LO.Modal.Theory α}
:
LO.Modal.Theory.Consistent H (T₁ ∪ T₂) → LO.Modal.Theory.Consistent H T₁ ∧ LO.Modal.Theory.Consistent H T₂
theorem
LO.Modal.Theory.union_not_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T₁ T₂ : LO.Modal.Theory α}
:
¬LO.Modal.Theory.Consistent H T₁ ∨ ¬LO.Modal.Theory.Consistent H T₂ → ¬LO.Modal.Theory.Consistent H (T₁ ∪ T₂)
theorem
LO.Modal.Theory.emptyset_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[H_consis : LO.System.Consistent H]
:
theorem
LO.Modal.Theory.iff_insert_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.iff_insert_inconsistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.provable_iff_insert_neg_not_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.unprovable_iff_insert_neg_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.unprovable_iff_singleton_neg_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
H ⊬ φ ↔ LO.Modal.Theory.Consistent H {∼φ}
theorem
LO.Modal.Theory.neg_provable_iff_insert_not_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.neg_unprovable_iff_insert_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Theory.unprovable_iff_singleton_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
H ⊬ ∼φ ↔ LO.Modal.Theory.Consistent H {φ}
theorem
LO.Modal.Theory.unprovable_falsum
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
(T_consis : LO.Modal.Theory.Consistent H T)
:
theorem
LO.Modal.Theory.unprovable_either
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
(T_consis : LO.Modal.Theory.Consistent H T)
:
theorem
LO.Modal.Theory.not_mem_falsum_of_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
(T_consis : LO.Modal.Theory.Consistent H T)
:
⊥ ∉ T
theorem
LO.Modal.Theory.not_singleton_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
[H.HasNecessitation]
(T_consis : LO.Modal.Theory.Consistent H T)
(h : ∼□φ ∈ T)
:
theorem
LO.Modal.Theory.either_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
(T_consis : LO.Modal.Theory.Consistent H T)
(φ : LO.Modal.Formula α)
:
LO.Modal.Theory.Consistent H (insert φ T) ∨ LO.Modal.Theory.Consistent H (insert (∼φ) T)
theorem
LO.Modal.Theory.exists_maximal_consistent_theory
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
(T_consis : LO.Modal.Theory.Consistent H T)
:
∃ (Z : LO.Modal.Theory α),
LO.Modal.Theory.Consistent H Z ∧ T ⊆ Z ∧ ∀ (U : LO.Modal.Theory α), LO.Modal.Theory.Consistent H U → Z ⊆ U → U = Z
theorem
LO.Modal.Theory.lindenbaum
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
(T_consis : LO.Modal.Theory.Consistent H T)
:
∃ (Z : LO.Modal.Theory α),
LO.Modal.Theory.Consistent H Z ∧ T ⊆ Z ∧ ∀ (U : LO.Modal.Theory α), LO.Modal.Theory.Consistent H U → Z ⊆ U → U = Z
theorem
LO.Modal.Theory.intro_union_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T₁ T₂ : LO.Modal.Theory α}
(h : ∀ {Γ₁ Γ₂ : List (LO.Modal.Formula α)}, ((∀ φ ∈ Γ₁, φ ∈ T₁) ∧ ∀ φ ∈ Γ₂, φ ∈ T₂) → H ⊬ ⋀Γ₁ ⋏ ⋀Γ₂ ➝ ⊥)
:
LO.Modal.Theory.Consistent H (T₁ ∪ T₂)
theorem
LO.Modal.Theory.intro_triunion_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{T₁ T₂ T₃ : LO.Modal.Theory α}
(h :
∀ {Γ₁ Γ₂ Γ₃ : List (LO.Modal.Formula α)},
((∀ φ ∈ Γ₁, φ ∈ T₁) ∧ (∀ φ ∈ Γ₂, φ ∈ T₂) ∧ ∀ φ ∈ Γ₃, φ ∈ T₃) → H ⊬ ⋀Γ₁ ⋏ ⋀Γ₂ ⋏ ⋀Γ₃ ➝ ⊥)
:
LO.Modal.Theory.Consistent H (T₁ ∪ T₂ ∪ T₃)
theorem
LO.Modal.Theory.not_mem_of_mem_neg
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
(T_consis : LO.Modal.Theory.Consistent H T)
(h : ∼φ ∈ T)
:
φ ∉ T
theorem
LO.Modal.Theory.not_mem_neg_of_mem
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
(T_consis : LO.Modal.Theory.Consistent H T)
(h : φ ∈ T)
:
∼φ ∉ T
- theory : LO.Modal.Theory α
- consistent : LO.Modal.Theory.Consistent H self.theory
- maximal : ∀ {U : LO.Modal.Theory α}, self.theory ⊂ U → ¬LO.Modal.Theory.Consistent H U
Instances For
Alias of LO.Modal.MaximalConsistentTheory
.
Instances For
theorem
LO.Modal.MaximalConsistentTheory.exists_maximal_Lconsistented_theory
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
(consisT : LO.Modal.Theory.Consistent H T)
:
∃ (Ω : LO.Modal.MCT H), T ⊆ Ω.theory
theorem
LO.Modal.MaximalConsistentTheory.lindenbaum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{T : LO.Modal.Theory α}
(consisT : LO.Modal.Theory.Consistent H T)
:
∃ (Ω : LO.Modal.MCT H), T ⊆ Ω.theory
Alias of LO.Modal.MaximalConsistentTheory.exists_maximal_Lconsistented_theory
.
instance
LO.Modal.MaximalConsistentTheory.instNonemptyMCTOfConsistentFormulaHilbert
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
[LO.System.Consistent H]
:
Nonempty (LO.Modal.MCT H)
Equations
- ⋯ = ⋯
theorem
LO.Modal.MaximalConsistentTheory.either_mem
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
(Ω : LO.Modal.MCT H)
(φ : LO.Modal.Formula α)
:
theorem
LO.Modal.MaximalConsistentTheory.maximal'
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
(hp : φ ∉ Ω.theory)
:
¬LO.Modal.Theory.Consistent H (insert φ Ω.theory)
theorem
LO.Modal.MaximalConsistentTheory.membership_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.MaximalConsistentTheory.subset_axiomset
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
:
H.axioms ⊆ Ω.theory
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.not_mem_falsum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
:
⊥ ∉ Ω.theory
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.mem_verum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
:
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.unprovable_falsum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
:
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_neg
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_negneg
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
:
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_imp
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
:
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_and
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
:
@[simp]
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_or
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_congr
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
:
theorem
LO.Modal.MaximalConsistentTheory.mem_dn_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.MaximalConsistentTheory.equality_def
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{Ω₁ Ω₂ : LO.Modal.MCT H}
:
theorem
LO.Modal.MaximalConsistentTheory.intro_equality
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω₁ Ω₂ : LO.Modal.MCT H}
{h : ∀ φ ∈ Ω₁.theory, φ ∈ Ω₂.theory}
:
Ω₁ = Ω₂
theorem
LO.Modal.MaximalConsistentTheory.neg_imp
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω₁ Ω₂ : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
(h : ψ ∈ Ω₂.theory → φ ∈ Ω₁.theory)
:
theorem
LO.Modal.MaximalConsistentTheory.neg_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω₁ Ω₂ : LO.Modal.MCT H}
{φ ψ : LO.Modal.Formula α}
(h : φ ∈ Ω₁.theory ↔ ψ ∈ Ω₂.theory)
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_multibox
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_box
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
:
theorem
LO.Modal.MaximalConsistentTheory.multibox_dn_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.box_dn_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
:
theorem
LO.Modal.MaximalConsistentTheory.mem_multibox_dual
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.mem_box_dual
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
:
theorem
LO.Modal.MaximalConsistentTheory.mem_multidia_dual
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.mem_dia_dual
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_multidia
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_dia
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{φ : LO.Modal.Formula α}
[H.IsNormal]
:
theorem
LO.Modal.MaximalConsistentTheory.multibox_multidia
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω₁ Ω₂ : LO.Modal.MCT H}
[H.IsNormal]
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_conj
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
{Γ : List (LO.Modal.Formula α)}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_multibox_conj
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
[H.IsNormal]
{Γ : List (LO.Modal.Formula α)}
{n : ℕ}
:
theorem
LO.Modal.MaximalConsistentTheory.iff_mem_box_conj
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{Ω : LO.Modal.MCT H}
[H.IsNormal]
{Γ : List (LO.Modal.Formula α)}
: