Documentation

Foundation.Modal.Hilbert.ConsistentTheory

@[reducible, inline]
abbrev LO.Modal.Theory.Consistent {α : Type u_1} (H : Hilbert α) (T : Theory α) :
Equations
@[reducible, inline]
abbrev LO.Modal.Theory.Inconsistent {α : Type u_1} (H : Hilbert α) (T : Theory α) :
Equations
theorem LO.Modal.Theory.def_consistent {α : Type u_1} {H : Hilbert α} {T : Theory α} :
Consistent H T ∀ (Γ : List (Formula α)), (∀ ψΓ, ψ T)Γ ⊬[H]
theorem LO.Modal.Theory.def_inconsistent {α : Type u_1} {H : Hilbert α} {T : Theory α} :
¬Consistent H T ∃ (Γ : List (Formula α)), (∀ ψΓ, ψ T) Γ ⊢[H]!
@[simp]
theorem LO.Modal.Theory.self_consistent {α : Type u_1} {H : Hilbert α} [H_consis : System.Consistent H] :
Consistent H H.axioms
theorem LO.Modal.Theory.union_consistent {α : Type u_1} {H : Hilbert α} {T₁ T₂ : Theory α} :
Consistent H (T₁ T₂)Consistent H T₁ Consistent H T₂
theorem LO.Modal.Theory.union_not_consistent {α : Type u_1} {H : Hilbert α} {T₁ T₂ : Theory α} :
¬Consistent H T₁ ¬Consistent H T₂¬Consistent H (T₁ T₂)
theorem LO.Modal.Theory.iff_insert_consistent {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} :
Consistent H (insert φ T) ∀ {Γ : List (Formula α)}, (∀ ψΓ, ψ T)H φ Γ
theorem LO.Modal.Theory.iff_insert_inconsistent {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} :
¬Consistent H (insert φ T) ∃ (Γ : List (Formula α)), (∀ φΓ, φ T) H ⊢! φ Γ
theorem LO.Modal.Theory.unprovable_falsum {α : Type u_1} {H : Hilbert α} {T : Theory α} (T_consis : Consistent H T) :
theorem LO.Modal.Theory.unprovable_either {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} (T_consis : Consistent H T) :
¬(T *⊢[H]! φ T *⊢[H]! φ)
theorem LO.Modal.Theory.not_mem_falsum_of_consistent {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] (T_consis : Consistent H T) :
T
theorem LO.Modal.Theory.not_singleton_consistent {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} [H.HasNecessitation] (T_consis : Consistent H T) (h : φ T) :
theorem LO.Modal.Theory.either_consistent {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] (T_consis : Consistent H T) (φ : Formula α) :
theorem LO.Modal.Theory.exists_maximal_consistent_theory {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] (T_consis : Consistent H T) :
∃ (Z : Theory α), Consistent H Z T Z ∀ (U : Theory α), Consistent H UZ UU = Z
theorem LO.Modal.Theory.lindenbaum {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] (T_consis : Consistent H T) :
∃ (Z : Theory α), Consistent H Z T Z ∀ (U : Theory α), Consistent H UZ UU = Z

Alias of LO.Modal.Theory.exists_maximal_consistent_theory.

theorem LO.Modal.Theory.intro_union_consistent {α : Type u_1} {H : Hilbert α} {T₁ T₂ : Theory α} (h : ∀ {Γ₁ Γ₂ : List (Formula α)}, ((∀ φΓ₁, φ T₁) φΓ₂, φ T₂)H Γ₁ Γ₂ ) :
Consistent H (T₁ T₂)
theorem LO.Modal.Theory.intro_triunion_consistent {α : Type u_1} {H : Hilbert α} [DecidableEq α] {T₁ T₂ T₃ : Theory α} (h : ∀ {Γ₁ Γ₂ Γ₃ : List (Formula α)}, ((∀ φΓ₁, φ T₁) (∀ φΓ₂, φ T₂) φΓ₃, φ T₃)H Γ₁ Γ₂ Γ₃ ) :
Consistent H (T₁ T₂ T₃)
theorem LO.Modal.Theory.not_mem_of_mem_neg {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} (T_consis : Consistent H T) (h : φ T) :
φT
theorem LO.Modal.Theory.not_mem_neg_of_mem {α : Type u_1} {H : Hilbert α} {T : Theory α} [DecidableEq α] {φ : Formula α} (T_consis : Consistent H T) (h : φ T) :
φT
structure LO.Modal.MaximalConsistentTheory {α : Type u_1} (H : Hilbert α) :
Type u_1
theorem LO.Modal.MaximalConsistentTheory.exists_maximal_Lconsistented_theory {α : Type u_1} [DecidableEq α] {H : Hilbert α} {T : Theory α} (consisT : Theory.Consistent H T) :
∃ (Ω : MCT H), T Ω.theory
theorem LO.Modal.MaximalConsistentTheory.either_mem {α : Type u_1} [DecidableEq α] {H : Hilbert α} (Ω : MCT H) (φ : Formula α) :
φ Ω.theory φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.maximal' {α : Type u_1} {H : Hilbert α} {Ω : MCT H} {φ : Formula α} (hp : φΩ.theory) :
¬Theory.Consistent H (insert φ Ω.theory)
theorem LO.Modal.MaximalConsistentTheory.membership_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} :
φ Ω.theory Ω.theory *⊢[H]! φ
theorem LO.Modal.MaximalConsistentTheory.subset_axiomset {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} :
H.axioms Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.not_mem_falsum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} :
Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.mem_verum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} :
Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.unprovable_falsum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} :
Ω.theory *⊬[H]
@[simp]
theorem LO.Modal.MaximalConsistentTheory.iff_mem_neg {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} :
φ Ω.theory φΩ.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_negneg {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} :
φ Ω.theory φ Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.iff_mem_imp {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ ψ : Formula α} :
φ ψ Ω.theory φ Ω.theoryψ Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.iff_mem_and {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ ψ : Formula α} :
φ ψ Ω.theory φ Ω.theory ψ Ω.theory
@[simp]
theorem LO.Modal.MaximalConsistentTheory.iff_mem_or {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ ψ : Formula α} :
φ ψ Ω.theory φ Ω.theory ψ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.iff_congr {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ ψ : Formula α} :
Ω.theory *⊢[H]! φ ψ(φ Ω.theory ψ Ω.theory)
theorem LO.Modal.MaximalConsistentTheory.mem_dn_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} :
φ Ω.theory φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.equality_def {α : Type u_1} {H : Hilbert α} {Ω₁ Ω₂ : MCT H} :
Ω₁ = Ω₂ Ω₁.theory = Ω₂.theory
theorem LO.Modal.MaximalConsistentTheory.intro_equality {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω₁ Ω₂ : MCT H} {h : φΩ₁.theory, φ Ω₂.theory} :
Ω₁ = Ω₂
theorem LO.Modal.MaximalConsistentTheory.neg_imp {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω₁ Ω₂ : MCT H} {φ ψ : Formula α} (h : ψ Ω₂.theoryφ Ω₁.theory) :
φ Ω₁.theoryψ Ω₂.theory
theorem LO.Modal.MaximalConsistentTheory.neg_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω₁ Ω₂ : MCT H} {φ ψ : Formula α} (h : φ Ω₁.theory ψ Ω₂.theory) :
φ Ω₁.theory ψ Ω₂.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_multibox {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] {n : } :
□^[n]φ Ω.theory ∀ {Ω' : MCT H}, □''⁻¹^[n]Ω.theory Ω'.theoryφ Ω'.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_box {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] :
φ Ω.theory ∀ {Ω' : MCT H}, □''⁻¹Ω.theory Ω'.theoryφ Ω'.theory
theorem LO.Modal.MaximalConsistentTheory.multibox_dn_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] {n : } :
□^[n](φ) Ω.theory □^[n]φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.box_dn_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] :
(φ) Ω.theory φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.mem_multibox_dual {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] {n : } :
□^[n]φ Ω.theory ◇^[n](φ) Ω.theory
theorem LO.Modal.MaximalConsistentTheory.mem_box_dual {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] :
φ Ω.theory (φ) Ω.theory
theorem LO.Modal.MaximalConsistentTheory.mem_multidia_dual {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] {n : } :
◇^[n]φ Ω.theory □^[n](φ) Ω.theory
theorem LO.Modal.MaximalConsistentTheory.mem_dia_dual {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] :
φ Ω.theory (φ) Ω.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_multidia {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] {n : } :
◇^[n]φ Ω.theory ∃ (Ω' : MCT H), □''⁻¹^[n]Ω.theory Ω'.theory φ Ω'.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_dia {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {φ : Formula α} [H.IsNormal] :
φ Ω.theory ∃ (Ω' : MCT H), □''⁻¹Ω.theory Ω'.theory φ Ω'.theory
theorem LO.Modal.MaximalConsistentTheory.multibox_multidia {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω₁ Ω₂ : MCT H} [H.IsNormal] {n : } :
(∀ {φ : Formula α}, □^[n]φ Ω₁.theoryφ Ω₂.theory) ∀ {φ : Formula α}, φ Ω₂.theory◇^[n]φ Ω₁.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_conj {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} {Γ : List (Formula α)} :
Γ Ω.theory φΓ, φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_multibox_conj {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} [H.IsNormal] {Γ : List (Formula α)} {n : } :
□^[n]Γ Ω.theory φΓ, □^[n]φ Ω.theory
theorem LO.Modal.MaximalConsistentTheory.iff_mem_box_conj {α : Type u_1} [DecidableEq α] {H : Hilbert α} {Ω : MCT H} [H.IsNormal] {Γ : List (Formula α)} :
Γ Ω.theory φΓ, φ Ω.theory