@[reducible, inline]
abbrev
LO.Modal.PLoN.CanonicalFrame
{α : Type u}
(H : LO.Modal.Hilbert α)
[Nonempty (LO.Modal.MCT H)]
:
Equations
- LO.Modal.PLoN.CanonicalFrame H = LO.Modal.PLoN.Frame.mk (LO.Modal.MCT H) fun (φ : LO.Modal.Formula α) (Ω₁ Ω₂ : LO.Modal.MCT H) => ∼□φ ∈ Ω₁.theory ∧ ∼φ ∈ Ω₂.theory
Instances For
@[reducible, inline]
abbrev
LO.Modal.PLoN.CanonicalModel
{α : Type u}
(H : LO.Modal.Hilbert α)
[Nonempty (LO.Modal.MCT H)]
:
Equations
- LO.Modal.PLoN.CanonicalModel H = { Frame := LO.Modal.PLoN.CanonicalFrame H, Valuation := fun (Ω : (LO.Modal.PLoN.CanonicalFrame H).World) (a : α) => LO.Modal.Formula.atom a ∈ Ω.theory }
Instances For
instance
LO.Modal.PLoN.CanonicalModel.instSatisfies
{α : Type u}
{H : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT H)]
:
LO.Semantics (LO.Modal.Formula α) (LO.Modal.PLoN.CanonicalModel H).World
Equations
- LO.Modal.PLoN.CanonicalModel.instSatisfies = LO.Modal.Formula.PLoN.Satisfies.semantics (LO.Modal.PLoN.CanonicalModel H)
theorem
LO.Modal.PLoN.truthlemma
{α : Type u}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT H)]
[H.HasNecessitation]
{φ : LO.Modal.Formula α}
{Ω : (LO.Modal.PLoN.CanonicalModel H).World}
:
theorem
LO.Modal.PLoN.complete_of_mem_canonicalFrame
{α : Type u}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT H)]
[H.HasNecessitation]
{φ : LO.Modal.Formula α}
{𝔽 : LO.Modal.PLoN.FrameClass α}
(hFC : LO.Modal.PLoN.CanonicalFrame H ∈ 𝔽)
:
theorem
LO.Modal.PLoN.instComplete_of_mem_canonicalFrame
{α : Type u}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT H)]
[H.HasNecessitation]
{𝔽 : LO.Modal.PLoN.FrameClass α}
(hFC : LO.Modal.PLoN.CanonicalFrame H ∈ 𝔽)
:
LO.Complete H 𝔽
instance
LO.Modal.PLoN.instCompleteHilbertFormulaFrameClassNAllFrameClass
{α : Type u}
[DecidableEq α]
:
Equations
- ⋯ = ⋯