@[reducible, inline]
abbrev
LO.Modal.PLoN.CanonicalFrame
{α : Type u}
(Λ : LO.Modal.Hilbert α)
[Nonempty (LO.Modal.MCT Λ)]
:
Equations
- LO.Modal.PLoN.CanonicalFrame Λ = LO.Modal.PLoN.Frame.mk (LO.Modal.MCT Λ) fun (p : LO.Modal.Formula α) (Ω₁ Ω₂ : LO.Modal.MCT Λ) => ∼□p ∈ Ω₁.theory ∧ ∼p ∈ Ω₂.theory
Instances For
@[reducible, inline]
abbrev
LO.Modal.PLoN.CanonicalModel
{α : Type u}
(Λ : LO.Modal.Hilbert α)
[Nonempty (LO.Modal.MCT Λ)]
:
Equations
- LO.Modal.PLoN.CanonicalModel Λ = { Frame := LO.Modal.PLoN.CanonicalFrame Λ, Valuation := fun (Ω : (LO.Modal.PLoN.CanonicalFrame Λ).World) (a : α) => LO.Modal.Formula.atom a ∈ Ω.theory }
Instances For
instance
LO.Modal.PLoN.CanonicalModel.instSatisfies
{α : Type u}
{Λ : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT Λ)]
:
LO.Semantics (LO.Modal.Formula α) (LO.Modal.PLoN.CanonicalModel Λ).World
Equations
- LO.Modal.PLoN.CanonicalModel.instSatisfies = LO.Modal.Formula.PLoN.Satisfies.semantics (LO.Modal.PLoN.CanonicalModel Λ)
theorem
LO.Modal.PLoN.truthlemma
{α : Type u}
[DecidableEq α]
{Λ : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT Λ)]
[Λ.HasNecessitation]
{p : LO.Modal.Formula α}
{Ω : (LO.Modal.PLoN.CanonicalModel Λ).World}
:
theorem
LO.Modal.PLoN.complete_of_mem_canonicalFrame
{α : Type u}
[DecidableEq α]
{Λ : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT Λ)]
[Λ.HasNecessitation]
{p : LO.Modal.Formula α}
{𝔽 : LO.Modal.PLoN.FrameClass α}
(hFC : LO.Modal.PLoN.CanonicalFrame Λ ∈ 𝔽)
:
theorem
LO.Modal.PLoN.instComplete_of_mem_canonicalFrame
{α : Type u}
[DecidableEq α]
{Λ : LO.Modal.Hilbert α}
[Nonempty (LO.Modal.MCT Λ)]
[Λ.HasNecessitation]
{𝔽 : LO.Modal.PLoN.FrameClass α}
(hFC : LO.Modal.PLoN.CanonicalFrame Λ ∈ 𝔽)
:
LO.Complete Λ 𝔽
instance
LO.Modal.PLoN.instCompleteHilbertFormulaFrameClassNAllFrameClass
{α : Type u}
[DecidableEq α]
:
Equations
- ⋯ = ⋯