Documentation

Foundation.Modal.PLoN.Semantics

structure LO.Modal.PLoN.Frame (α : Type u_2) :
Type (max (u_1 + 1) u_2)
Instances For
    @[reducible, inline]
    noncomputable abbrev LO.Modal.PLoN.Frame.default {α : Type u_1} {F : Frame α} :
    F.World
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.Modal.PLoN.Frame.Rel' {α : Type u_1} {F : Frame α} (φ : Formula α) (x y : F.World) :
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          structure LO.Modal.PLoN.FiniteFrame (α : Type u_1) extends LO.Modal.PLoN.Frame α :
          Type (max u_1 (u_2 + 1))
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              abbrev LO.Modal.PLoN.FrameClass (α : Type u_1) :
              Type (max u_1 (u_2 + 1))
              Equations
              Instances For
                @[reducible, inline]
                abbrev LO.Modal.PLoN.Valuation {α : Type u_2} (F : Frame α) :
                Type u_1 → Type (max u_1 u_3)
                Equations
                Instances For
                  structure LO.Modal.PLoN.Model (α : Type u_1) :
                  Type (max u_1 (u_2 + 1))
                  Instances For
                    @[reducible, inline]
                    abbrev LO.Modal.PLoN.Model.World {α : Type u_1} (M : Model α) :
                    Type u_2
                    Equations
                    • M.World = M.Frame.World
                    Instances For
                      Equations
                      @[simp]
                      theorem LO.Modal.Formula.PLoN.Satisfies.iff_models {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
                      x φ Satisfies M x φ
                      theorem LO.Modal.Formula.PLoN.Satisfies.box_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
                      x φ ∀ (y : M.Frame.World), PLoN.Frame.Rel' φ x yy φ
                      theorem LO.Modal.Formula.PLoN.Satisfies.not_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
                      x φ ¬x φ
                      theorem LO.Modal.Formula.PLoN.Satisfies.imp_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
                      x φ ψ x φx ψ
                      theorem LO.Modal.Formula.PLoN.Satisfies.or_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
                      x φ ψ x φ x ψ
                      theorem LO.Modal.Formula.PLoN.Satisfies.and_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
                      x φ ψ x φ x ψ
                      Equations
                      Instances For
                        @[simp]
                        theorem LO.Modal.Formula.PLoN.ValidOnModel.imply₂ {α : Type u_1} {M : PLoN.Model α} {φ ψ χ : Formula α} :
                        M Axioms.Imply₂ φ ψ χ
                        Equations
                        Instances For
                          @[simp]
                          theorem LO.Modal.Formula.PLoN.ValidOnFrame.nec {α : Type u_1} {F : PLoN.Frame α} {φ : Formula α} (h : F φ) :
                          F φ
                          theorem LO.Modal.Formula.PLoN.ValidOnFrame.mdp {α : Type u_1} {F : PLoN.Frame α} {φ ψ : Formula α} (hpq : F φ ψ) (hp : F φ) :
                          F ψ
                          theorem LO.Modal.Formula.PLoN.ValidOnFrame.imply₂ {α : Type u_1} {F : PLoN.Frame α} {φ ψ χ : Formula α} :
                          F Axioms.Imply₂ φ ψ χ
                          Equations
                          Instances For
                            @[simp]
                            theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.nec {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ : Formula α} (h : 𝔽 φ) :
                            𝔽 φ
                            theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.mdp {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ ψ : Formula α} (hpq : 𝔽 φ ψ) (hp : 𝔽 φ) :
                            𝔽 ψ
                            theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.imply₂ {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ ψ χ : Formula α} :
                            𝔽 Axioms.Imply₂ φ ψ χ
                            Equations
                            Instances For
                              @[reducible, inline]
                              Equations
                              Instances For
                                theorem LO.Modal.PLoN.N_defines {α : Type u_1} :
                                (Hilbert.N α).DefinesPLoNFrameClass (AllFrameClass α)