Documentation

Foundation.Modal.PLoN.Semantics

@[reducible, inline]
noncomputable abbrev LO.Modal.PLoN.Frame.default {α : Type u_1} {F : Frame α} :
F.World
Equations
@[reducible, inline]
abbrev LO.Modal.PLoN.Frame.Rel' {α : Type u_1} {F : Frame α} (φ : Formula α) (x y : F.World) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
structure LO.Modal.PLoN.FiniteFrame (α : Type u_1) extends LO.Modal.PLoN.Frame α :
Type (max u_1 (u_2 + 1))
Instances For
@[reducible, inline]
abbrev LO.Modal.PLoN.Valuation {α : Type u_2} (F : Frame α) :
Type u_1 → Type (max u_1 u_3)
Equations
Equations
@[simp]
theorem LO.Modal.Formula.PLoN.Satisfies.iff_models {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
x φ Satisfies M x φ
theorem LO.Modal.Formula.PLoN.Satisfies.box_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
x φ ∀ (y : M.Frame.World), PLoN.Frame.Rel' φ x yy φ
theorem LO.Modal.Formula.PLoN.Satisfies.not_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ : Formula α} :
x φ ¬x φ
theorem LO.Modal.Formula.PLoN.Satisfies.imp_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
x φ ψ x φx ψ
theorem LO.Modal.Formula.PLoN.Satisfies.or_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
x φ ψ x φ x ψ
theorem LO.Modal.Formula.PLoN.Satisfies.and_def {α : Type u_1} {M : PLoN.Model α} {x : M.World} {φ ψ : Formula α} :
x φ ψ x φ x ψ
Equations
@[simp]
theorem LO.Modal.Formula.PLoN.ValidOnModel.imply₂ {α : Type u_1} {M : PLoN.Model α} {φ ψ χ : Formula α} :
M Axioms.Imply₂ φ ψ χ
Equations
@[simp]
theorem LO.Modal.Formula.PLoN.ValidOnFrame.nec {α : Type u_1} {F : PLoN.Frame α} {φ : Formula α} (h : F φ) :
F φ
theorem LO.Modal.Formula.PLoN.ValidOnFrame.mdp {α : Type u_1} {F : PLoN.Frame α} {φ ψ : Formula α} (hpq : F φ ψ) (hp : F φ) :
F ψ
theorem LO.Modal.Formula.PLoN.ValidOnFrame.imply₂ {α : Type u_1} {F : PLoN.Frame α} {φ ψ χ : Formula α} :
F Axioms.Imply₂ φ ψ χ
@[simp]
theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.nec {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ : Formula α} (h : 𝔽 φ) :
𝔽 φ
theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.mdp {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ ψ : Formula α} (hpq : 𝔽 φ ψ) (hp : 𝔽 φ) :
𝔽 ψ
theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.imply₂ {α : Type u_1} {𝔽 : PLoN.FrameClass α} {φ ψ χ : Formula α} :
𝔽 Axioms.Imply₂ φ ψ χ
Equations
theorem LO.Modal.PLoN.N_defines {α : Type u_1} :
(Hilbert.N α).DefinesPLoNFrameClass (AllFrameClass α)