Documentation

Foundation.Modal.Hilbert.Complemental

Equations
@[simp]
theorem LO.Modal.Formula.complement.neg_def {α : Type u_1} {φ : Formula α} :
-(φ) = φ
@[simp]
theorem LO.Modal.Formula.complement.box_def {α : Type u_1} {φ : Formula α} :
-(φ) = φ
theorem LO.Modal.Formula.complement.imp_def₁ {α : Type u_1} {φ ψ : Formula α} (hq : ψ ) :
-(φ ψ) = (φ ψ)
theorem LO.Modal.Formula.complement.imp_def₂ {α : Type u_1} {φ ψ : Formula α} (hq : ψ = ) :
-(φ ψ) = φ
theorem LO.Modal.Formula.complement.resort_box {α : Type u_1} {φ ψ : Formula α} (h : -φ = ψ) :
φ = ψ
theorem LO.Modal.Formula.complement.or {α : Type u_1} [DecidableEq α] (φ : Formula α) :
-φ = φ ∃ (ψ : Formula α), ψ = φ
theorem LO.Modal.complement_derive_bot {α : Type u_1} {S : Type u_2} [System (Formula α) S] {𝓢 : S} [System.ModusPonens 𝓢] {φ : Formula α} [DecidableEq α] (hp : 𝓢 ⊢! φ) (hcp : 𝓢 ⊢! -φ) :
𝓢 ⊢!
theorem LO.Modal.neg_complement_derive_bot {α : Type u_1} {S : Type u_2} [System (Formula α) S] {𝓢 : S} [System.ModusPonens 𝓢] {φ : Formula α} [DecidableEq α] (hp : 𝓢 ⊢! φ) (hcp : 𝓢 ⊢! -φ) :
𝓢 ⊢!
theorem LO.Modal.Formulae.complementary_mem {α : Type u_1} [DecidableEq α] {P : Formulae α} {φ : Formula α} (h : φ P) :
φ P
theorem LO.Modal.Formulae.complementary_comp {α : Type u_1} [DecidableEq α] {P : Formulae α} {φ : Formula α} (h : φ P) :
-φ P
theorem LO.Modal.Formulae.complementary_mem_box {α : Type u_1} [DecidableEq α] {P : Formulae α} {φ : Formula α} (hi : ∀ {ψ χ : Formula α}, ψ χ Pψ P := by trivial) :
φ Pφ P
Instances
    Equations
    • P.SubformulaeComplementaryClosed φ = P.ComplementaryClosed φ.subformulae
    theorem LO.Modal.Formulae.intro_union_consistent {α : Type u_1} {H : Hilbert α} [DecidableEq α] {P₁ P₂ : Formulae α} (h : ∀ {Γ₁ Γ₂ : List (Formula α)}, ((∀ φΓ₁, φ P₁) φΓ₂, φ P₂)H Γ₁ Γ₂ ) :
    Consistent H (P₁ P₂)
    theorem LO.Modal.Formulae.intro_triunion_consistent {α : Type u_1} {H : Hilbert α} [DecidableEq α] {P₁ P₂ P₃ : Formulae α} (h : ∀ {Γ₁ Γ₂ Γ₃ : List (Formula α)}, ((∀ φΓ₁, φ P₁) (∀ φΓ₂, φ P₂) φΓ₃, φ P₃)H Γ₁ Γ₂ Γ₃ ) :
    Consistent H (P₁ P₂ P₃)
    Equations
    theorem LO.Modal.Formulae.exists_consistent_complementary_closed.either {α : Type u_1} (H : Hilbert α) [DecidableEq α] {P : Formulae α} {φ : Formula α} {l : List (Formula α)} (hp : φ l) :
    φ enum H P l -φ enum H P l
    theorem LO.Modal.Formulae.exists_consistent_complementary_closed.subset {α : Type u_1} (H : Hilbert α) [DecidableEq α] {P : Formulae α} {l : List (Formula α)} {φ : Formula α} (h : φ enum H P l) :
    φ P φ l ψl, -ψ = φ
    theorem LO.Modal.Formulae.exists_consistent_complementary_closed {α : Type u_1} {H : Hilbert α} [DecidableEq α] {P : Formulae α} (S : Formulae α) (h_sub : P S) (P_consis : Consistent H P) :
    ∃ (P' : Formulae α), P P' Consistent H P' P'.ComplementaryClosed S
    structure LO.Modal.ComplementaryClosedConsistentFormulae {α : Type u_1} [DecidableEq α] (H : Hilbert α) (S : Formulae α) :
    Type u_1
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.lindenbaum {α : Type u_1} [DecidableEq α] {H : Hilbert α} (S : Formulae α) {X : Formulae α} (X_sub : X S) (X_consis : Formulae.Consistent H X) :
    ∃ (X' : CCF H S), X X'.formulae
    @[simp]
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.unprovable_falsum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} :
    X.formulae *⊬[H]
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_compl_of_not_mem {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ : Formula α} (hs : ψ S) :
    ψX.formulae-ψ X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_of_not_mem_compl {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ : Formula α} (hs : ψ S) :
    -ψX.formulaeψ X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.membership_iff {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ : Formula α} (hq_sub : ψ S) :
    ψ X.formulae X.formulae *⊢[H]! ψ
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_verum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} (h : S) :
    X.formulae
    @[simp]
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_falsum {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} :
    X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_compl {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ : Formula α} (hq_sub : ψ S) :
    ψ X.formulae -ψX.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_imp {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ χ : Formula α} (hsub_qr : ψ χ S) (hsub_q : ψ S := by trivial) (hsub_r : χ S := by trivial) :
    ψ χ X.formulae ψ X.formulae-χX.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_not_mem_imp {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X : CCF H S} {ψ χ : Formula α} (hsub_qr : ψ χ S) (hsub_q : ψ S := by trivial) (hsub_r : χ S := by trivial) :
    ψ χX.formulae ψ X.formulae -χ X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.equality_def {α : Type u_1} [DecidableEq α] {H : Hilbert α} {S : Formulae α} {X₁ X₂ : CCF H S} :
    X₁ = X₂ X₁.formulae = X₂.formulae