Equations
- LO.Modal.Formula.«term-_» = Lean.ParserDescr.node `LO.Modal.Formula.«term-_» 80 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "-") (Lean.ParserDescr.cat `term 80))
theorem
LO.Modal.complement_derive_bot
{α : Type u_1}
{S : Type u_2}
[System (Formula α) S]
{𝓢 : S}
[System.ModusPonens 𝓢]
{φ : Formula α}
[DecidableEq α]
(hp : 𝓢 ⊢! φ)
(hcp : 𝓢 ⊢! -φ)
:
Equations
Equations
- LO.Modal.Formulae.«term_⁻» = Lean.ParserDescr.trailingNode `LO.Modal.Formulae.«term_⁻» 80 80 (Lean.ParserDescr.symbol "⁻")
theorem
LO.Modal.Formulae.complementary_mem
{α : Type u_1}
[DecidableEq α]
{P : Formulae α}
{φ : Formula α}
(h : φ ∈ P)
:
theorem
LO.Modal.Formulae.complementary_comp
{α : Type u_1}
[DecidableEq α]
{P : Formulae α}
{φ : Formula α}
(h : φ ∈ P)
:
def
LO.Modal.Formulae.SubformulaeComplementaryClosed
{α : Type u_1}
[DecidableEq α]
(P : Formulae α)
(φ : Formula α)
:
Equations
- P.SubformulaeComplementaryClosed φ = P.ComplementaryClosed φ.subformulae
@[simp]
theorem
LO.Modal.Formulae.iff_theory_consistent_formulae_consistent
{α : Type u_1}
{H : Hilbert α}
{P : Formulae α}
:
Theory.Consistent H ↑P ↔ Consistent H P
@[simp]
theorem
LO.Modal.Formulae.empty_conisistent
{α : Type u_1}
{H : Hilbert α}
[System.Consistent H]
:
Consistent H ∅
theorem
LO.Modal.Formulae.provable_iff_insert_neg_not_consistent
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{P : Formulae α}
{φ : Formula α}
:
theorem
LO.Modal.Formulae.neg_provable_iff_insert_not_consistent
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{P : Formulae α}
{φ : Formula α}
:
theorem
LO.Modal.Formulae.unprovable_iff_singleton_neg_consistent
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{φ : Formula α}
:
H ⊬ φ ↔ Consistent H {∼φ}
theorem
LO.Modal.Formulae.unprovable_iff_singleton_compl_consistent
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{φ : Formula α}
:
H ⊬ φ ↔ Consistent H {-φ}
theorem
LO.Modal.Formulae.provable_iff_singleton_compl_inconsistent
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{φ : Formula α}
:
H ⊢! φ ↔ ¬Consistent H {-φ}
noncomputable def
LO.Modal.Formulae.exists_consistent_complementary_closed.next
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
(φ : Formula α)
(P : Formulae α)
:
Formulae α
Equations
- LO.Modal.Formulae.exists_consistent_complementary_closed.next H φ P = if LO.Modal.Formulae.Consistent H (insert φ P) then insert φ P else insert (-φ) P
noncomputable def
LO.Modal.Formulae.exists_consistent_complementary_closed.enum
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
(P : Formulae α)
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Modal.Formulae.exists_consistent_complementary_closed.enum H P [] = P
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.next_consistent
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
{P : Formulae α}
(P_consis : Consistent H P)
(φ : Formula α)
:
Consistent H (next H φ P)
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_consistent
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
{P : Formulae α}
(P_consis : Consistent H P)
{l : List (Formula α)}
:
Consistent H (enum H P l)
@[simp]
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_nil
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
{P : Formulae α}
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_subset
{α : Type u_1}
(H : Hilbert α)
[DecidableEq α]
{P : Formulae α}
{l : List (Formula α)}
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{P : Formulae α}
(S : Formulae α)
(h_sub : P ⊆ S⁻)
(P_consis : Consistent H P)
:
∃ (P' : Formulae α), P ⊆ P' ∧ Consistent H P' ∧ P'.ComplementaryClosed S
structure
LO.Modal.ComplementaryClosedConsistentFormulae
{α : Type u_1}
[DecidableEq α]
(H : Hilbert α)
(S : Formulae α)
:
Type u_1
- formulae : Formulae α
- consistent : Formulae.Consistent H self.formulae
- closed : self.formulae.ComplementaryClosed S
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.lindenbaum
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
(S : Formulae α)
{X : Formulae α}
(X_sub : X ⊆ S⁻)
(X_consis : Formulae.Consistent H X)
:
noncomputable instance
LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
{S : Formulae α}
[System.Consistent H]
:
Equations
- LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert = { default := ⋯.choose }
@[simp]
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.unprovable_falsum
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
{S : Formulae α}
{X : CCF H S}
:
@[simp]
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.mem_falsum
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
{S : Formulae α}
{X : CCF H S}
:
⊥ ∉ X.formulae
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.equality_def
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
{S : Formulae α}
{X₁ X₂ : CCF H S}
:
instance
LO.Modal.ComplementaryClosedConsistentFormulae.instFiniteCCF
{α : Type u_1}
[DecidableEq α]
{H : Hilbert α}
{S : Formulae α}
: