Documentation

Foundation.Modal.Hilbert.Complemental

Equations
  • -φ.imp LO.Modal.Formula.falsum = φ
  • -x = x
Instances For
    @[simp]
    theorem LO.Modal.Formula.complement.neg_def {α : Type u_1} {φ : LO.Modal.Formula α} :
    -(φ) = φ
    @[simp]
    theorem LO.Modal.Formula.complement.imp_def₁ {α : Type u_1} {φ ψ : LO.Modal.Formula α} (hq : ψ ) :
    -(φ ψ) = (φ ψ)
    theorem LO.Modal.Formula.complement.imp_def₂ {α : Type u_1} {φ ψ : LO.Modal.Formula α} (hq : ψ = ) :
    -(φ ψ) = φ
    theorem LO.Modal.Formula.complement.resort_box {α : Type u_1} {φ ψ : LO.Modal.Formula α} (h : -φ = ψ) :
    φ = ψ
    theorem LO.Modal.Formula.complement.or {α : Type u_1} [DecidableEq α] (φ : LO.Modal.Formula α) :
    -φ = φ ∃ (ψ : LO.Modal.Formula α), ψ = φ
    theorem LO.Modal.complement_derive_bot {α : Type u_1} {S : Type u_2} [LO.System (LO.Modal.Formula α) S] {𝓢 : S} [LO.System.ModusPonens 𝓢] {φ : LO.Modal.Formula α} [DecidableEq α] (hp : 𝓢 ⊢! φ) (hcp : 𝓢 ⊢! -φ) :
    𝓢 ⊢!
    theorem LO.Modal.neg_complement_derive_bot {α : Type u_1} {S : Type u_2} [LO.System (LO.Modal.Formula α) S] {𝓢 : S} [LO.System.ModusPonens 𝓢] {φ : LO.Modal.Formula α} [DecidableEq α] (hp : 𝓢 ⊢! φ) (hcp : 𝓢 ⊢! -φ) :
    𝓢 ⊢!
    Equations
    Instances For
      theorem LO.Modal.Formulae.complementary_mem {α : Type u_1} [DecidableEq α] {P : LO.Modal.Formulae α} {φ : LO.Modal.Formula α} (h : φ P) :
      φ P
      theorem LO.Modal.Formulae.complementary_mem_box {α : Type u_1} [DecidableEq α] {P : LO.Modal.Formulae α} {φ : LO.Modal.Formula α} (hi : ∀ {ψ χ : LO.Modal.Formula α}, ψ χ Pψ P := by trivial) :
      φ Pφ P
      Instances
        Equations
        • P.SubformulaeComplementaryClosed φ = P.ComplementaryClosed φ.subformulae
        Instances For
          theorem LO.Modal.Formulae.intro_union_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} [DecidableEq α] {P₁ P₂ : LO.Modal.Formulae α} (h : ∀ {Γ₁ Γ₂ : List (LO.Modal.Formula α)}, ((∀ φΓ₁, φ P₁) φΓ₂, φ P₂)H Γ₁ Γ₂ ) :
          theorem LO.Modal.Formulae.intro_triunion_consistent {α : Type u_1} {H : LO.Modal.Hilbert α} [DecidableEq α] {P₁ P₂ P₃ : LO.Modal.Formulae α} (h : ∀ {Γ₁ Γ₂ Γ₃ : List (LO.Modal.Formula α)}, ((∀ φΓ₁, φ P₁) (∀ φΓ₂, φ P₂) φΓ₃, φ P₃)H Γ₁ Γ₂ Γ₃ ) :
          Equations
          Instances For
            theorem LO.Modal.Formulae.exists_consistent_complementary_closed {α : Type u_1} {H : LO.Modal.Hilbert α} [DecidableEq α] {P : LO.Modal.Formulae α} (S : LO.Modal.Formulae α) (h_sub : P S) (P_consis : LO.Modal.Formulae.Consistent H P) :
            ∃ (P' : LO.Modal.Formulae α), P P' LO.Modal.Formulae.Consistent H P' P'.ComplementaryClosed S
            Instances For
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.lindenbaum {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} (S : LO.Modal.Formulae α) {X : LO.Modal.Formulae α} (X_sub : X S) (X_consis : LO.Modal.Formulae.Consistent H X) :
              ∃ (X' : LO.Modal.CCF H S), X X'.formulae
              Equations
              • LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert = { default := .choose }
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_compl_of_not_mem {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ : LO.Modal.Formula α} (hs : ψ S) :
              ψX.formulae-ψ X.formulae
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_of_not_mem_compl {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ : LO.Modal.Formula α} (hs : ψ S) :
              -ψX.formulaeψ X.formulae
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.membership_iff {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ : LO.Modal.Formula α} (hq_sub : ψ S) :
              ψ X.formulae X.formulae *⊢[H]! ψ
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_compl {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ : LO.Modal.Formula α} (hq_sub : ψ S) :
              ψ X.formulae -ψX.formulae
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_imp {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ χ : LO.Modal.Formula α} (hsub_qr : ψ χ S) (hsub_q : ψ S := by trivial) (hsub_r : χ S := by trivial) :
              ψ χ X.formulae ψ X.formulae-χX.formulae
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_not_mem_imp {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF H S} {ψ χ : LO.Modal.Formula α} (hsub_qr : ψ χ S) (hsub_q : ψ S := by trivial) (hsub_r : χ S := by trivial) :
              ψ χX.formulae ψ X.formulae -χ X.formulae
              theorem LO.Modal.ComplementaryClosedConsistentFormulae.equality_def {α : Type u_1} [DecidableEq α] {H : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X₁ X₂ : LO.Modal.CCF H S} :
              X₁ = X₂ X₁.formulae = X₂.formulae