Instances For
Equations
- LO.Modal.Formula.«term-_» = Lean.ParserDescr.node `LO.Modal.Formula.«term-_» 80 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "-") (Lean.ParserDescr.cat `term 80))
Instances For
@[simp]
@[simp]
theorem
LO.Modal.Formula.complement.imp_def₂
{α : Type u_1}
{φ ψ : LO.Modal.Formula α}
(hq : ψ = ⊥)
:
theorem
LO.Modal.Formula.complement.resort_box
{α : Type u_1}
{φ ψ : LO.Modal.Formula α}
(h : -φ = □ψ)
:
theorem
LO.Modal.complement_derive_bot
{α : Type u_1}
{S : Type u_2}
[LO.System (LO.Modal.Formula α) S]
{𝓢 : S}
[LO.System.ModusPonens 𝓢]
{φ : LO.Modal.Formula α}
[DecidableEq α]
(hp : 𝓢 ⊢! φ)
(hcp : 𝓢 ⊢! -φ)
:
theorem
LO.Modal.neg_complement_derive_bot
{α : Type u_1}
{S : Type u_2}
[LO.System (LO.Modal.Formula α) S]
{𝓢 : S}
[LO.System.ModusPonens 𝓢]
{φ : LO.Modal.Formula α}
[DecidableEq α]
(hp : 𝓢 ⊢! ∼φ)
(hcp : 𝓢 ⊢! ∼-φ)
:
Equations
- P⁻ = P ∪ Finset.image LO.Modal.Formula.complement P
Instances For
Equations
- LO.Modal.Formulae.«term_⁻» = Lean.ParserDescr.trailingNode `LO.Modal.Formulae.«term_⁻» 80 80 (Lean.ParserDescr.symbol "⁻")
Instances For
theorem
LO.Modal.Formulae.complementary_mem
{α : Type u_1}
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
(h : φ ∈ P)
:
theorem
LO.Modal.Formulae.complementary_comp
{α : Type u_1}
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
(h : φ ∈ P)
:
theorem
LO.Modal.Formulae.complementary_mem_box
{α : Type u_1}
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
(hi : ∀ {ψ χ : LO.Modal.Formula α}, ψ ➝ χ ∈ P → ψ ∈ P := by trivial)
:
class
LO.Modal.Formulae.ComplementaryClosed
{α : Type u_1}
[DecidableEq α]
(P S : LO.Modal.Formulae α)
:
Instances
def
LO.Modal.Formulae.SubformulaeComplementaryClosed
{α : Type u_1}
[DecidableEq α]
(P : LO.Modal.Formulae α)
(φ : LO.Modal.Formula α)
:
Equations
- P.SubformulaeComplementaryClosed φ = P.ComplementaryClosed φ.subformulae
Instances For
def
LO.Modal.Formulae.Consistent
{α : Type u_1}
(H : LO.Modal.Hilbert α)
(P : LO.Modal.Formulae α)
:
Equations
- LO.Modal.Formulae.Consistent H P = ↑P *⊬[H] ⊥
Instances For
@[simp]
theorem
LO.Modal.Formulae.iff_theory_consistent_formulae_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
{P : LO.Modal.Formulae α}
:
@[simp]
theorem
LO.Modal.Formulae.empty_conisistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[LO.System.Consistent H]
:
theorem
LO.Modal.Formulae.provable_iff_insert_neg_not_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Formulae.neg_provable_iff_insert_not_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
:
theorem
LO.Modal.Formulae.unprovable_iff_singleton_neg_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
H ⊬ φ ↔ LO.Modal.Formulae.Consistent H {∼φ}
theorem
LO.Modal.Formulae.unprovable_iff_singleton_compl_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
H ⊬ φ ↔ LO.Modal.Formulae.Consistent H {-φ}
theorem
LO.Modal.Formulae.provable_iff_singleton_compl_inconsistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{φ : LO.Modal.Formula α}
:
H ⊢! φ ↔ ¬LO.Modal.Formulae.Consistent H {-φ}
theorem
LO.Modal.Formulae.intro_union_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{P₁ P₂ : LO.Modal.Formulae α}
(h : ∀ {Γ₁ Γ₂ : List (LO.Modal.Formula α)}, ((∀ φ ∈ Γ₁, φ ∈ P₁) ∧ ∀ φ ∈ Γ₂, φ ∈ P₂) → H ⊬ ⋀Γ₁ ⋏ ⋀Γ₂ ➝ ⊥)
:
LO.Modal.Formulae.Consistent H (P₁ ∪ P₂)
theorem
LO.Modal.Formulae.intro_triunion_consistent
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{P₁ P₂ P₃ : LO.Modal.Formulae α}
(h :
∀ {Γ₁ Γ₂ Γ₃ : List (LO.Modal.Formula α)},
((∀ φ ∈ Γ₁, φ ∈ P₁) ∧ (∀ φ ∈ Γ₂, φ ∈ P₂) ∧ ∀ φ ∈ Γ₃, φ ∈ P₃) → H ⊬ ⋀Γ₁ ⋏ ⋀Γ₂ ⋏ ⋀Γ₃ ➝ ⊥)
:
LO.Modal.Formulae.Consistent H (P₁ ∪ P₂ ∪ P₃)
noncomputable def
LO.Modal.Formulae.exists_consistent_complementary_closed.next
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
(φ : LO.Modal.Formula α)
(P : LO.Modal.Formulae α)
:
Equations
- LO.Modal.Formulae.exists_consistent_complementary_closed.next H φ P = if LO.Modal.Formulae.Consistent H (insert φ P) then insert φ P else insert (-φ) P
Instances For
noncomputable def
LO.Modal.Formulae.exists_consistent_complementary_closed.enum
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
(P : LO.Modal.Formulae α)
:
List (LO.Modal.Formula α) → LO.Modal.Formulae α
Equations
- One or more equations did not get rendered due to their size.
- LO.Modal.Formulae.exists_consistent_complementary_closed.enum H P [] = P
Instances For
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.next_consistent
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
(P_consis : LO.Modal.Formulae.Consistent H P)
(φ : LO.Modal.Formula α)
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_consistent
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
(P_consis : LO.Modal.Formulae.Consistent H P)
{l : List (LO.Modal.Formula α)}
:
@[simp]
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_nil
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_subset_step
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
{ψ : LO.Modal.Formula α}
{l : List (LO.Modal.Formula α)}
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.enum_subset
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
{l : List (LO.Modal.Formula α)}
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.either
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
{φ : LO.Modal.Formula α}
{l : List (LO.Modal.Formula α)}
(hp : φ ∈ l)
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed.subset
{α : Type u_1}
(H : LO.Modal.Hilbert α)
[DecidableEq α]
{P : LO.Modal.Formulae α}
{l : List (LO.Modal.Formula α)}
{φ : LO.Modal.Formula α}
(h : φ ∈ LO.Modal.Formulae.exists_consistent_complementary_closed.enum H P l)
:
theorem
LO.Modal.Formulae.exists_consistent_complementary_closed
{α : Type u_1}
{H : LO.Modal.Hilbert α}
[DecidableEq α]
{P : LO.Modal.Formulae α}
(S : LO.Modal.Formulae α)
(h_sub : P ⊆ S⁻)
(P_consis : LO.Modal.Formulae.Consistent H P)
:
∃ (P' : LO.Modal.Formulae α), P ⊆ P' ∧ LO.Modal.Formulae.Consistent H P' ∧ P'.ComplementaryClosed S
structure
LO.Modal.ComplementaryClosedConsistentFormulae
{α : Type u_1}
[DecidableEq α]
(H : LO.Modal.Hilbert α)
(S : LO.Modal.Formulae α)
:
Type u_1
- formulae : LO.Modal.Formulae α
- consistent : LO.Modal.Formulae.Consistent H self.formulae
- closed : self.formulae.ComplementaryClosed S
Instances For
def
LO.Modal.CCF
{α : Type u_1}
[DecidableEq α]
(H : LO.Modal.Hilbert α)
(S : LO.Modal.Formulae α)
:
Type u_1
Alias of LO.Modal.ComplementaryClosedConsistentFormulae
.
Instances For
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.lindenbaum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
(S : LO.Modal.Formulae α)
{X : LO.Modal.Formulae α}
(X_sub : X ⊆ S⁻)
(X_consis : LO.Modal.Formulae.Consistent H X)
:
∃ (X' : LO.Modal.CCF H S), X ⊆ X'.formulae
noncomputable instance
LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
[LO.System.Consistent H]
:
Inhabited (LO.Modal.CCF H S)
Equations
- LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert = { default := ⋯.choose }
@[simp]
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.unprovable_falsum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.mem_compl_of_not_mem
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ : LO.Modal.Formula α}
(hs : ψ ∈ S)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.mem_of_not_mem_compl
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ : LO.Modal.Formula α}
(hs : ψ ∈ S)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.membership_iff
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ : LO.Modal.Formula α}
(hq_sub : ψ ∈ S)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.mem_verum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
(h : ⊤ ∈ S)
:
@[simp]
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.mem_falsum
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
:
⊥ ∉ X.formulae
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_compl
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ : LO.Modal.Formula α}
(hq_sub : ψ ∈ S)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_imp
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ χ : LO.Modal.Formula α}
(hsub_qr : ψ ➝ χ ∈ S)
(hsub_q : ψ ∈ S := by trivial)
(hsub_r : χ ∈ S := by trivial)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.iff_not_mem_imp
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X : LO.Modal.CCF H S}
{ψ χ : LO.Modal.Formula α}
(hsub_qr : ψ ➝ χ ∈ S)
(hsub_q : ψ ∈ S := by trivial)
(hsub_r : χ ∈ S := by trivial)
:
theorem
LO.Modal.ComplementaryClosedConsistentFormulae.equality_def
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
{X₁ X₂ : LO.Modal.CCF H S}
:
instance
LO.Modal.ComplementaryClosedConsistentFormulae.instFiniteCCF
{α : Type u_1}
[DecidableEq α]
{H : LO.Modal.Hilbert α}
{S : LO.Modal.Formulae α}
:
Finite (LO.Modal.CCF H S)
Equations
- ⋯ = ⋯