def
LO.IntProp.Kripke.CanonicalFrame
{α : Type u}
(Λ : LO.IntProp.Hilbert α)
[Nonempty (LO.IntProp.SCT Λ)]
:
Equations
- LO.IntProp.Kripke.CanonicalFrame Λ = LO.Kripke.Frame.mk (LO.IntProp.SCT Λ) fun (t₁ t₂ : LO.IntProp.SCT Λ) => t₁.tableau.1 ⊆ t₂.tableau.1
Instances For
theorem
LO.IntProp.Kripke.CanonicalFrame.reflexive
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
:
theorem
LO.IntProp.Kripke.CanonicalFrame.antisymmetric
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
:
theorem
LO.IntProp.Kripke.CanonicalFrame.transitive
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
:
theorem
LO.IntProp.Kripke.CanonicalFrame.confluent
{α : Type u}
[DecidableEq α]
[Encodable α]
{Λ : LO.IntProp.Hilbert α}
[Λ.IncludeEFQ]
[Nonempty (LO.IntProp.SCT Λ)]
[LO.System.HasAxiomWeakLEM Λ]
:
theorem
LO.IntProp.Kripke.CanonicalFrame.connected
{α : Type u}
[DecidableEq α]
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
[LO.System.HasAxiomDummett Λ]
:
def
LO.IntProp.Kripke.CanonicalModel
{α : Type u}
(Λ : LO.IntProp.Hilbert α)
[Nonempty (LO.IntProp.SCT Λ)]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.IntProp.Kripke.CanonicalModel.hereditary
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
:
(LO.IntProp.Kripke.CanonicalModel Λ).Valuation.atomic_hereditary
@[reducible]
instance
LO.IntProp.Kripke.CanonicalModel.instSemanticsFormulaWorld
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
:
LO.Semantics (LO.IntProp.Formula α) (LO.IntProp.Kripke.CanonicalModel Λ).World
Equations
- LO.IntProp.Kripke.CanonicalModel.instSemanticsFormulaWorld = LO.IntProp.Formula.Kripke.Satisfies.semantics (LO.IntProp.Kripke.CanonicalModel Λ)
@[simp]
theorem
LO.IntProp.Kripke.CanonicalModel.frame_def
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
{t₁ : LO.IntProp.SCT Λ}
{t₂ : LO.IntProp.SCT Λ}
:
(LO.IntProp.Kripke.CanonicalModel Λ).Frame.Rel t₁ t₂ ↔ t₁.tableau.1 ⊆ t₂.tableau.1
@[simp]
theorem
LO.IntProp.Kripke.CanonicalModel.valuation_def
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Nonempty (LO.IntProp.SCT Λ)]
{t : LO.IntProp.SCT Λ}
{a : α}
:
(LO.IntProp.Kripke.CanonicalModel Λ).Valuation t a ↔ LO.IntProp.Formula.atom a ∈ t.tableau.1
theorem
LO.IntProp.Kripke.truthlemma
{α : Type u}
[DecidableEq α]
[Encodable α]
{Λ : LO.IntProp.Hilbert α}
[Λ.IncludeEFQ]
[Nonempty (LO.IntProp.SCT Λ)]
{p : LO.IntProp.Formula α}
{t : (LO.IntProp.Kripke.CanonicalModel Λ).World}
:
theorem
LO.IntProp.Kripke.deducible_of_validOnCanonicelModel
{α : Type u}
[DecidableEq α]
[Encodable α]
{Λ : LO.IntProp.Hilbert α}
[Λ.IncludeEFQ]
[Nonempty (LO.IntProp.SCT Λ)]
{p : LO.IntProp.Formula α}
:
LO.IntProp.Kripke.CanonicalModel Λ ⊧ p ↔ Λ ⊢! p
theorem
LO.IntProp.Kripke.complete
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Λ.IncludeEFQ]
[Nonempty (LO.IntProp.SCT Λ)]
[DecidableEq α]
[Encodable α]
{𝔽 : LO.Kripke.FrameClass}
(H : LO.IntProp.Kripke.CanonicalFrame Λ ∈ 𝔽)
{p : LO.IntProp.Formula α}
:
instance
LO.IntProp.Kripke.instComplete
{α : Type u}
{Λ : LO.IntProp.Hilbert α}
[Λ.IncludeEFQ]
[Nonempty (LO.IntProp.SCT Λ)]
[DecidableEq α]
[Encodable α]
{𝔽 : LO.Kripke.FrameClass}
(H : LO.IntProp.Kripke.CanonicalFrame Λ ∈ 𝔽)
:
LO.Complete Λ 𝔽#α
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯