Equations
- LO.IntProp.Hilbert.Kripke.canonicalFrameOf H = LO.IntProp.Kripke.Frame.mk (LO.IntProp.SCT H) fun (t₁ t₂ : LO.IntProp.SCT H) => t₁.tableau.1 ⊆ t₂.tableau.1
Instances For
theorem
LO.IntProp.Hilbert.Kripke.canonicalFrame.is_confluent
{H : Hilbert ℕ}
[H.IncludeEFQ]
[H.Consistent]
[System.HasAxiomWeakLEM H]
:
Confluent (canonicalFrameOf H).Rel
theorem
LO.IntProp.Hilbert.Kripke.canonicalFrame.is_connected
{H : Hilbert ℕ}
[H.IncludeEFQ]
[H.Consistent]
[System.HasAxiomDummett H]
:
Connected (canonicalFrameOf H).Rel
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.IntProp.Hilbert.Kripke.truthlemma
{H : Hilbert ℕ}
{φ : Formula ℕ}
[H.IncludeEFQ]
[H.Consistent]
{t : (canonicalModelOf H).World}
:
theorem
LO.IntProp.Hilbert.Kripke.deducible_of_validOnCanonicelModel
{H : Hilbert ℕ}
{φ : Formula ℕ}
[H.IncludeEFQ]
[H.Consistent]
:
canonicalModelOf H ⊧ φ ↔ H ⊢! φ
theorem
LO.IntProp.Hilbert.Kripke.complete_of_canonical
{H : Hilbert ℕ}
{φ : Formula ℕ}
[H.IncludeEFQ]
[H.Consistent]
{C : Kripke.FrameClass}
(hC : canonicalFrameOf H ∈ C)
:
instance
LO.IntProp.Hilbert.Kripke.instCompleteOfCanonical
{H : Hilbert ℕ}
[H.IncludeEFQ]
[H.Consistent]
{C : Kripke.FrameClass}
(hC : canonicalFrameOf H ∈ C)
:
Complete H C