def
LO.IntProp.Formula.hVal
{α : Type u}
{ℍ : Type u_1}
[HeytingAlgebra ℍ]
(v : α → ℍ)
:
Formula α → ℍ
Equations
- LO.IntProp.Formula.hVal v (LO.IntProp.Formula.atom a) = v a
- LO.IntProp.Formula.hVal v LO.IntProp.Formula.verum = ⊤
- LO.IntProp.Formula.hVal v LO.IntProp.Formula.falsum = ⊥
- LO.IntProp.Formula.hVal v (φ.and ψ) = LO.IntProp.Formula.hVal v φ ⊓ LO.IntProp.Formula.hVal v ψ
- LO.IntProp.Formula.hVal v (φ.or ψ) = LO.IntProp.Formula.hVal v φ ⊔ LO.IntProp.Formula.hVal v ψ
- LO.IntProp.Formula.hVal v (φ.imp ψ) = LO.IntProp.Formula.hVal v φ ⇨ LO.IntProp.Formula.hVal v ψ
- LO.IntProp.Formula.hVal v φ.neg = (LO.IntProp.Formula.hVal v φ)ᶜ
Instances For
@[simp]
theorem
LO.IntProp.Formula.hVal_atom
{α : Type u}
{ℍ : Type u_1}
[HeytingAlgebra ℍ]
(v : α → ℍ)
(a : α)
:
@[simp]
@[simp]
- Algebra : Type u_2
- valAtom : α → self.Algebra
- heyting : HeytingAlgebra self.Algebra
- nontrivial : Nontrivial self.Algebra
Instances For
instance
LO.IntProp.HeytingSemantics.instCoeSortType
{α : Type u}
:
CoeSort (HeytingSemantics α) (Type u_1)
Equations
instance
LO.IntProp.HeytingSemantics.instHeytingAlgebraAlgebra
{α : Type u}
(ℍ : HeytingSemantics α)
:
HeytingAlgebra ℍ.Algebra
Equations
- ℍ.instHeytingAlgebraAlgebra = ℍ.heyting
instance
LO.IntProp.HeytingSemantics.instNontrivialAlgebra
{α : Type u}
(ℍ : HeytingSemantics α)
:
Nontrivial ℍ.Algebra
def
LO.IntProp.HeytingSemantics.hVal
{α : Type u}
(ℍ : HeytingSemantics α)
(φ : Formula α)
:
ℍ.Algebra
Equations
- ℍ.hVal φ = LO.IntProp.Formula.hVal ℍ.valAtom φ
Instances For
Equations
- LO.IntProp.«term_⊧ₕ_» = Lean.ParserDescr.trailingNode `LO.IntProp.«term_⊧ₕ_» 45 46 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊧ₕ ") (Lean.ParserDescr.cat `term 46))
Instances For
@[simp]
@[simp]
@[simp]
theorem
LO.IntProp.HeytingSemantics.hVal_and
{α : Type u}
(ℍ : HeytingSemantics α)
(φ ψ : Formula α)
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.hVal_or
{α : Type u}
(ℍ : HeytingSemantics α)
(φ ψ : Formula α)
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.hVal_imply
{α : Type u}
(ℍ : HeytingSemantics α)
(φ ψ : Formula α)
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.hVal_iff
{α : Type u}
(ℍ : HeytingSemantics α)
(φ ψ : Formula α)
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.hVal_not
{α : Type u}
(ℍ : HeytingSemantics α)
(φ : Formula α)
:
instance
LO.IntProp.HeytingSemantics.instSemanticsFormula
{α : Type u}
:
Semantics (Formula α) (HeytingSemantics α)
Equations
- LO.IntProp.HeytingSemantics.instSemanticsFormula = { Realize := fun (ℍ : LO.IntProp.HeytingSemantics α) (φ : LO.IntProp.Formula α) => ℍ.hVal φ = ⊤ }
theorem
LO.IntProp.HeytingSemantics.val_def
{α : Type u}
{ℍ : HeytingSemantics α}
{φ : Formula α}
:
ℍ ⊧ φ ↔ Formula.hVal ℍ.valAtom φ = ⊤
theorem
LO.IntProp.HeytingSemantics.val_def'
{α : Type u}
{ℍ : HeytingSemantics α}
{φ : Formula α}
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.val_imply
{α : Type u}
(ℍ : HeytingSemantics α)
{φ ψ : Formula α}
:
@[simp]
theorem
LO.IntProp.HeytingSemantics.val_iff
{α : Type u}
(ℍ : HeytingSemantics α)
{φ ψ : Formula α}
:
Equations
Instances For
def
LO.IntProp.HeytingSemantics.lindenbaum
{α : Type u}
(H : Hilbert α)
[DecidableEq α]
[H.IncludeEFQ]
[System.Consistent H]
:
Equations
Instances For
theorem
LO.IntProp.HeytingSemantics.lindenbaum_val_eq
{α : Type u}
(H : Hilbert α)
[DecidableEq α]
[H.IncludeEFQ]
[System.Consistent H]
{φ : Formula α}
:
(lindenbaum H).hVal φ = ⟦φ⟧
theorem
LO.IntProp.HeytingSemantics.lindenbaum_complete_iff
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
[System.Consistent H]
{φ : Formula α}
:
lindenbaum H ⊧ φ ↔ H ⊢! φ
instance
LO.IntProp.HeytingSemantics.instSoundHilbertFormulaLindenbaum
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
[System.Consistent H]
:
Sound H (lindenbaum H)
instance
LO.IntProp.HeytingSemantics.instCompleteHilbertFormulaLindenbaum
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
[System.Consistent H]
:
Complete H (lindenbaum H)
theorem
LO.IntProp.HeytingSemantics.complete
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
{φ : Formula α}
[H.IncludeEFQ]
(h : mod H ⊧ φ)
:
H ⊢! φ
instance
LO.IntProp.HeytingSemantics.instCompleteHilbertFormulaSetModOfDecidableEqOfIncludeEFQ
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
: