Documentation

Foundation.IntProp.Heyting.Semantics

@[simp]
theorem LO.IntProp.Formula.hVal_atom {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (a : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_verum {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_falsum {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_and {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (φ ψ : LO.IntProp.Formula α) :
@[simp]
theorem LO.IntProp.Formula.hVal_or {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (φ ψ : LO.IntProp.Formula α) :
@[simp]
theorem LO.IntProp.Formula.hVal_imp {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (φ ψ : LO.IntProp.Formula α) :
@[simp]
theorem LO.IntProp.Formula.hVal_neg {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (φ : LO.IntProp.Formula α) :
structure LO.IntProp.HeytingSemantics (α : Type u_1) :
Type (max u_1 (u_2 + 1))
Instances For
    Equations
    • LO.IntProp.HeytingSemantics.instCoeSortType = { coe := LO.IntProp.HeytingSemantics.Algebra }
    Equations
    • .instHeytingAlgebraAlgebra = .heyting
    Equations
    Instances For
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_and {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ ψ : LO.IntProp.Formula α) :
      .hVal (φ ψ) = .hVal φ .hVal ψ
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_or {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ ψ : LO.IntProp.Formula α) :
      .hVal (φ ψ) = .hVal φ .hVal ψ
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_imply {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ ψ : LO.IntProp.Formula α) :
      .hVal (φ ψ) = .hVal φ .hVal ψ
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_iff {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ ψ : LO.IntProp.Formula α) :
      .hVal (φ ψ) = bihimp (.hVal φ) (.hVal ψ)
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_not {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ : LO.IntProp.Formula α) :
      .hVal (φ) = (.hVal φ)
      Equations
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_imply {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) {φ ψ : LO.IntProp.Formula α} :
      φ ψ .hVal φ .hVal ψ
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_iff {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) {φ ψ : LO.IntProp.Formula α} :
      φ ψ .hVal φ = .hVal ψ
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_or {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (φ ψ : LO.IntProp.Formula α) :
      φ ψ .hVal φ .hVal ψ =
      Equations
      • LO.IntProp.HeytingSemantics.instIntuitionisticHilbertFormulaOfIncludeEFQ = LO.System.Intuitionistic.mk