Documentation

Foundation.Vorspiel.Order

def IsInfiniteDescendingChain {α : Sort u} (r : ααProp) (c : α) :
Equations
noncomputable def descendingChain {α : Sort u} (r : ααProp) (z : α) :
α
Equations
theorem not_acc_iff {α : Sort u} (r : ααProp) {x : α} :
¬Acc r x ∃ (y : α), r y x ¬Acc r y
@[simp]
theorem descending_chain_zero {α : Sort u} (r : ααProp) (z : α) :
theorem isInfiniteDescendingChain_of_non_acc {α : Sort u} (r : ααProp) (z : α) (hz : ¬Acc r z) :
theorem himp_himp_inf_himp_inf_le {α : Type u_1} [HeytingAlgebra α] (a b c : α) :
(a b c) (a b) a c
theorem himp_inf_himp_inf_sup_le {α : Type u_1} [HeytingAlgebra α] (a b c : α) :
(a c) (b c) (a b) c