Documentation

Foundation.FirstOrder.Completeness.SearchTree

Instances For
    inductive LO.FirstOrder.Completeness.ReduxNat {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (s : ) :
    Instances For
      theorem LO.FirstOrder.Completeness.ReduxNat.antimonotone {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {s : } {Δ₂ Δ₁ : LO.FirstOrder.Sequent L} (h : LO.FirstOrder.Completeness.ReduxNat T s Δ₂ Δ₁) :
      Δ₁ Δ₂
      theorem LO.FirstOrder.Completeness.ReduxNat.toRedux {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {c : LO.FirstOrder.System.Code L} {i : } {Δ₂ Δ₁ : LO.FirstOrder.Sequent L} (h : LO.FirstOrder.Completeness.ReduxNat T (Nat.pair (Encodable.encode c) i) Δ₂ Δ₁) :
      inductive LO.FirstOrder.Completeness.SearchTreeAux {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
      Instances For
        def LO.FirstOrder.Completeness.SearchTree {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
        Equations
        Instances For
          @[reducible, inline]
          abbrev LO.FirstOrder.Completeness.SearchTree.rank {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : LO.FirstOrder.Completeness.SearchTree T Γ) :
          Equations
          • τ.rank = τ.fst
          Instances For
            @[reducible, inline]
            abbrev LO.FirstOrder.Completeness.SearchTree.seq {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : LO.FirstOrder.Completeness.SearchTree T Γ) :
            Equations
            • τ.seq = τ.snd.fst
            Instances For
              inductive LO.FirstOrder.Completeness.SearchTree.Lt {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
              Instances For
                theorem LO.FirstOrder.Completeness.SearchTree.rank_of_lt {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : LO.FirstOrder.Completeness.SearchTree T Γ} (h : LO.FirstOrder.Completeness.SearchTree.Lt T Γ τ₂ τ₁) :
                τ₂.rank = τ₁.rank + 1
                theorem LO.FirstOrder.Completeness.SearchTree.seq_of_lt {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : LO.FirstOrder.Completeness.SearchTree T Γ} (h : LO.FirstOrder.Completeness.SearchTree.Lt T Γ τ₂ τ₁) :
                LO.FirstOrder.Completeness.ReduxNat T τ₁.rank τ₂.seq τ₁.seq
                instance LO.FirstOrder.Completeness.SearchTree.instTop {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                Equations
                • LO.FirstOrder.Completeness.SearchTree.instTop = { top := 0, Γ, LO.FirstOrder.Completeness.SearchTreeAux.zero }
                @[simp]
                theorem LO.FirstOrder.Completeness.SearchTree.rank_top {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                .rank = 0
                @[simp]
                theorem LO.FirstOrder.Completeness.SearchTree.seq_top {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                .seq = Γ
                noncomputable def LO.FirstOrder.Completeness.SearchTree.recursion {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (LO.FirstOrder.Completeness.SearchTree.Lt T Γ)) {C : LO.FirstOrder.Completeness.SearchTree T ΓSort v} (τ : LO.FirstOrder.Completeness.SearchTree T Γ) (h : (τ₁ : LO.FirstOrder.Completeness.SearchTree T Γ) → ((τ₂ : LO.FirstOrder.Completeness.SearchTree T Γ) → LO.FirstOrder.Completeness.SearchTree.Lt T Γ τ₂ τ₁C τ₂)C τ₁) :
                C τ
                Equations
                Instances For
                  noncomputable def LO.FirstOrder.Completeness.syntacticMainLemma {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (LO.FirstOrder.Completeness.SearchTree.Lt T Γ)) (φ : LO.FirstOrder.Completeness.SearchTree T Γ) :
                  T φ.seq
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def LO.FirstOrder.Completeness.chainU {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
                    Equations
                    Instances For
                      noncomputable def LO.FirstOrder.Completeness.chain {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) (s : ) :
                      Equations
                      Instances For
                        def LO.FirstOrder.Completeness.chainSet {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
                        Equations
                        Instances For
                          theorem LO.FirstOrder.Completeness.chainU_val_fst_eq {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (LO.FirstOrder.Completeness.SearchTree.Lt T Γ)) (s : ) :
                          Equations
                          • LO.FirstOrder.Completeness.instInhabitedModel = { default := default }
                          instance LO.FirstOrder.Completeness.Model.structure {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : LO.FirstOrder.Theory L) (Γ : LO.FirstOrder.Sequent L) :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          @[simp]
                          theorem LO.FirstOrder.Completeness.Model.rel {L : LO.FirstOrder.Language} {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {k : } (r : L.Rel k) (v : Fin kLO.FirstOrder.SyntacticTerm L) :