Documentation

Foundation.FirstOrder.Completeness.SearchTree

Instances For
    theorem LO.FirstOrder.Completeness.Redux.antimonotone {L : Language} {T : Theory L} {c : System.Code L} {Δ₂ Δ₁ : Sequent L} (h : Redux T c Δ₂ Δ₁) :
    Δ₁ Δ₂
    inductive LO.FirstOrder.Completeness.ReduxNat {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (s : ) :
    Sequent LSequent LProp
    Instances For
      theorem LO.FirstOrder.Completeness.ReduxNat.antimonotone {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {s : } {Δ₂ Δ₁ : Sequent L} (h : ReduxNat T s Δ₂ Δ₁) :
      Δ₁ Δ₂
      theorem LO.FirstOrder.Completeness.ReduxNat.toRedux {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {c : System.Code L} {i : } {Δ₂ Δ₁ : Sequent L} (h : ReduxNat T (Nat.pair (Encodable.encode c) i) Δ₂ Δ₁) :
      Redux T c Δ₂ Δ₁
      inductive LO.FirstOrder.Completeness.SearchTreeAux {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
      Sequent LType u
      Instances For
        def LO.FirstOrder.Completeness.SearchTree {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
        Equations
        Instances For
          @[reducible, inline]
          abbrev LO.FirstOrder.Completeness.SearchTree.rank {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : SearchTree T Γ) :
          Equations
          • τ.rank = τ.fst
          Instances For
            @[reducible, inline]
            abbrev LO.FirstOrder.Completeness.SearchTree.seq {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : SearchTree T Γ) :
            Equations
            • τ.seq = τ.snd.fst
            Instances For
              inductive LO.FirstOrder.Completeness.SearchTree.Lt {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
              SearchTree T ΓSearchTree T ΓProp
              Instances For
                theorem LO.FirstOrder.Completeness.SearchTree.rank_of_lt {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : SearchTree T Γ} (h : Lt T Γ τ₂ τ₁) :
                τ₂.rank = τ₁.rank + 1
                theorem LO.FirstOrder.Completeness.SearchTree.seq_of_lt {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : SearchTree T Γ} (h : Lt T Γ τ₂ τ₁) :
                ReduxNat T τ₁.rank τ₂.seq τ₁.seq
                instance LO.FirstOrder.Completeness.SearchTree.instTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                Equations
                @[simp]
                theorem LO.FirstOrder.Completeness.SearchTree.rank_top {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                .rank = 0
                @[simp]
                theorem LO.FirstOrder.Completeness.SearchTree.seq_top {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
                .seq = Γ
                noncomputable def LO.FirstOrder.Completeness.SearchTree.recursion {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (Lt T Γ)) {C : SearchTree T ΓSort v} (τ : SearchTree T Γ) (h : (τ₁ : SearchTree T Γ) → ((τ₂ : SearchTree T Γ) → Lt T Γ τ₂ τ₁C τ₂)C τ₁) :
                C τ
                Equations
                Instances For
                  noncomputable def LO.FirstOrder.Completeness.syntacticMainLemma {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (SearchTree.Lt T Γ)) (φ : SearchTree T Γ) :
                  T φ.seq
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def LO.FirstOrder.Completeness.syntacticMainLemmaTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (SearchTree.Lt T Γ)) :
                    T Γ
                    Equations
                    Instances For
                      noncomputable def LO.FirstOrder.Completeness.chainU {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
                      SearchTree T Γ
                      Equations
                      Instances For
                        noncomputable def LO.FirstOrder.Completeness.chain {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) (s : ) :
                        Equations
                        Instances For
                          def LO.FirstOrder.Completeness.chainSet {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
                          Equations
                          Instances For
                            theorem LO.FirstOrder.Completeness.top_inaccessible {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
                            theorem LO.FirstOrder.Completeness.chainU_spec {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
                            theorem LO.FirstOrder.Completeness.chainU_val_fst_eq {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (s : ) :
                            (chainU T Γ s).rank = s
                            theorem LO.FirstOrder.Completeness.chain_spec {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (s : ) :
                            ReduxNat T s (chain T Γ (s + 1)) (chain T Γ s)
                            theorem LO.FirstOrder.Completeness.chain_monotone {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {s u : } (h : s u) :
                            chain T Γ s chain T Γ u
                            theorem LO.FirstOrder.Completeness.chain_spec' {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (c : System.Code L) (i : ) :
                            Redux T c (chain T Γ (Nat.pair (Encodable.encode c) i + 1)) (chain T Γ (Nat.pair (Encodable.encode c) i))
                            theorem LO.FirstOrder.Completeness.chainSet_verum {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
                            chainSet T Γ
                            theorem LO.FirstOrder.Completeness.chainSet_axL {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {k : } (r : L.Rel k) (v : Fin kSyntacticTerm L) :
                            theorem LO.FirstOrder.Completeness.chainSet_and {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ ψ : SyntacticFormula L} (h : φ ψ chainSet T Γ) :
                            φ chainSet T Γ ψ chainSet T Γ
                            theorem LO.FirstOrder.Completeness.chainSet_or {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ ψ : SyntacticFormula L} (h : φ ψ chainSet T Γ) :
                            φ chainSet T Γ ψ chainSet T Γ
                            theorem LO.FirstOrder.Completeness.chainSet_all {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticSemiformula L 1} (h : ∀' φ chainSet T Γ) :
                            ∃ (t : Semiterm L 0), φ/[t] chainSet T Γ
                            theorem LO.FirstOrder.Completeness.chainSet_ex {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticSemiformula L 1} (h : ∃' φ chainSet T Γ) (t : Semiterm L 0) :
                            φ/[t] chainSet T Γ
                            theorem LO.FirstOrder.Completeness.chainSet_id {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticFormula L} (h : φ T) :
                            @[reducible, inline]
                            Equations
                            Instances For
                              instance LO.FirstOrder.Completeness.Model.structure {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
                              Structure L (Model T Γ)
                              Equations
                              • One or more equations did not get rendered due to their size.
                              @[simp]
                              theorem LO.FirstOrder.Completeness.Model.val {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {n : } {e : Fin nSyntacticTerm L} {ε : Model T Γ} (t : SyntacticSemiterm L n) :
                              Semiterm.val («structure» T Γ) e ε t = (Rew.bind e ε) t
                              @[simp]
                              theorem LO.FirstOrder.Completeness.Model.rel {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {k : } (r : L.Rel k) (v : Fin kSyntacticTerm L) :
                              @[irreducible]
                              theorem LO.FirstOrder.Completeness.semanticMainLemma_val {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (φ : SyntacticFormula L) :
                              theorem LO.FirstOrder.Completeness.Model.models {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
                              Model T Γ ⊧ₘ* T
                              theorem LO.FirstOrder.Completeness.semanticMainLemmaTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticFormula L} (h : φ Γ) :