Documentation

Foundation.FirstOrder.Completeness.SearchTree

theorem LO.FirstOrder.Completeness.Redux.antimonotone {L : Language} {T : Theory L} {c : System.Code L} {Δ₂ Δ₁ : Sequent L} (h : Redux T c Δ₂ Δ₁) :
Δ₁ Δ₂
inductive LO.FirstOrder.Completeness.ReduxNat {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (s : ) :
Sequent LSequent LProp
theorem LO.FirstOrder.Completeness.ReduxNat.antimonotone {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {s : } {Δ₂ Δ₁ : Sequent L} (h : ReduxNat T s Δ₂ Δ₁) :
Δ₁ Δ₂
theorem LO.FirstOrder.Completeness.ReduxNat.toRedux {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {c : System.Code L} {i : } {Δ₂ Δ₁ : Sequent L} (h : ReduxNat T (Nat.pair (Encodable.encode c) i) Δ₂ Δ₁) :
Redux T c Δ₂ Δ₁
inductive LO.FirstOrder.Completeness.SearchTreeAux {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
Sequent LType u
def LO.FirstOrder.Completeness.SearchTree {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
Equations
Instances For
@[reducible, inline]
abbrev LO.FirstOrder.Completeness.SearchTree.rank {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : SearchTree T Γ) :
Equations
  • τ.rank = τ.fst
@[reducible, inline]
abbrev LO.FirstOrder.Completeness.SearchTree.seq {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (τ : SearchTree T Γ) :
Equations
  • τ.seq = τ.snd.fst
inductive LO.FirstOrder.Completeness.SearchTree.Lt {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
SearchTree T ΓSearchTree T ΓProp
theorem LO.FirstOrder.Completeness.SearchTree.rank_of_lt {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : SearchTree T Γ} (h : Lt T Γ τ₂ τ₁) :
τ₂.rank = τ₁.rank + 1
theorem LO.FirstOrder.Completeness.SearchTree.seq_of_lt {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {τ₁ τ₂ : SearchTree T Γ} (h : Lt T Γ τ₂ τ₁) :
ReduxNat T τ₁.rank τ₂.seq τ₁.seq
instance LO.FirstOrder.Completeness.SearchTree.instTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
Equations
@[simp]
theorem LO.FirstOrder.Completeness.SearchTree.rank_top {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
.rank = 0
@[simp]
theorem LO.FirstOrder.Completeness.SearchTree.seq_top {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
.seq = Γ
noncomputable def LO.FirstOrder.Completeness.SearchTree.recursion {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (Lt T Γ)) {C : SearchTree T ΓSort v} (τ : SearchTree T Γ) (h : (τ₁ : SearchTree T Γ) → ((τ₂ : SearchTree T Γ) → Lt T Γ τ₂ τ₁C τ₂)C τ₁) :
C τ
Equations
noncomputable def LO.FirstOrder.Completeness.syntacticMainLemma {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (SearchTree.Lt T Γ)) (φ : SearchTree T Γ) :
T φ.seq
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.FirstOrder.Completeness.syntacticMainLemmaTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (wf : WellFounded (SearchTree.Lt T Γ)) :
T Γ
Equations
noncomputable def LO.FirstOrder.Completeness.chainU {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
SearchTree T Γ
Equations
noncomputable def LO.FirstOrder.Completeness.chain {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) (s : ) :
Equations
def LO.FirstOrder.Completeness.chainSet {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
Equations
theorem LO.FirstOrder.Completeness.top_inaccessible {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
theorem LO.FirstOrder.Completeness.chainU_spec {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
theorem LO.FirstOrder.Completeness.chainU_val_fst_eq {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (s : ) :
(chainU T Γ s).rank = s
theorem LO.FirstOrder.Completeness.chain_spec {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (s : ) :
ReduxNat T s (chain T Γ (s + 1)) (chain T Γ s)
theorem LO.FirstOrder.Completeness.chain_monotone {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {s u : } (h : s u) :
chain T Γ s chain T Γ u
theorem LO.FirstOrder.Completeness.chain_spec' {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (c : System.Code L) (i : ) :
Redux T c (chain T Γ (Nat.pair (Encodable.encode c) i + 1)) (chain T Γ (Nat.pair (Encodable.encode c) i))
theorem LO.FirstOrder.Completeness.chainSet_verum {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
chainSet T Γ
theorem LO.FirstOrder.Completeness.chainSet_axL {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {k : } (r : L.Rel k) (v : Fin kSyntacticTerm L) :
theorem LO.FirstOrder.Completeness.chainSet_and {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ ψ : SyntacticFormula L} (h : φ ψ chainSet T Γ) :
φ chainSet T Γ ψ chainSet T Γ
theorem LO.FirstOrder.Completeness.chainSet_or {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ ψ : SyntacticFormula L} (h : φ ψ chainSet T Γ) :
φ chainSet T Γ ψ chainSet T Γ
theorem LO.FirstOrder.Completeness.chainSet_all {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticSemiformula L 1} (h : ∀' φ chainSet T Γ) :
∃ (t : Semiterm L 0), φ/[t] chainSet T Γ
theorem LO.FirstOrder.Completeness.chainSet_ex {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticSemiformula L 1} (h : ∃' φ chainSet T Γ) (t : Semiterm L 0) :
φ/[t] chainSet T Γ
theorem LO.FirstOrder.Completeness.chainSet_id {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticFormula L} (h : φ T) :
instance LO.FirstOrder.Completeness.Model.structure {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (T : Theory L) (Γ : Sequent L) :
Structure L (Model T Γ)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.FirstOrder.Completeness.Model.val {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {n : } {e : Fin nSyntacticTerm L} {ε : Model T Γ} (t : SyntacticSemiterm L n) :
Semiterm.val («structure» T Γ) e ε t = (Rew.bind e ε) t
@[simp]
theorem LO.FirstOrder.Completeness.Model.rel {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {k : } (r : L.Rel k) (v : Fin kSyntacticTerm L) :
@[irreducible]
theorem LO.FirstOrder.Completeness.semanticMainLemma_val {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) (φ : SyntacticFormula L) :
theorem LO.FirstOrder.Completeness.Model.models {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) :
Model T Γ ⊧ₘ* T
theorem LO.FirstOrder.Completeness.semanticMainLemmaTop {L : Language} {T : Theory L} {Γ : Sequent L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] (nwf : ¬WellFounded (SearchTree.Lt T Γ)) {φ : SyntacticFormula L} (h : φ Γ) :