@[reducible, inline]
abbrev
LO.IntProp.Kripke.IntDPCounterexampleFrame
(F₁ : LO.Kripke.Frame)
(F₂ : LO.Kripke.Frame)
(w₁ : F₁.World)
(w₂ : F₂.World)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.IntProp.Kripke.IntDPCounterexampleFrame.reflexive
{F₁ : LO.Kripke.Frame}
{F₂ : LO.Kripke.Frame}
{w₁ : F₁.World}
{w₂ : F₂.World}
(F₁_refl : Reflexive F₁.Rel)
(F₂_refl : Reflexive F₂.Rel)
:
Reflexive (LO.IntProp.Kripke.IntDPCounterexampleFrame F₁ F₂ w₁ w₂).Rel
theorem
LO.IntProp.Kripke.IntDPCounterexampleFrame.transitive
{F₁ : LO.Kripke.Frame}
{F₂ : LO.Kripke.Frame}
{w₁ : F₁.World}
{w₂ : F₂.World}
(F₁_trans : Transitive F₁.Rel)
(F₂_trans : Transitive F₂.Rel)
:
Transitive (LO.IntProp.Kripke.IntDPCounterexampleFrame F₁ F₂ w₁ w₂).Rel
theorem
LO.IntProp.Kripke.IntDPCounterexampleFrame.antisymmetric
{F₁ : LO.Kripke.Frame}
{F₂ : LO.Kripke.Frame}
{w₁ : F₁.World}
{w₂ : F₂.World}
(F₁_antisymm : Antisymmetric F₁.Rel)
(F₂_antisymm : Antisymmetric F₂.Rel)
:
Antisymmetric (LO.IntProp.Kripke.IntDPCounterexampleFrame F₁ F₂ w₁ w₂).Rel
@[reducible, inline]
abbrev
LO.IntProp.Kripke.IntDPCounterexampleModel
{α : Type u_1}
(M₁ : LO.Kripke.Model α)
(M₂ : LO.Kripke.Model α)
(w₁ : M₁.World)
(w₂ : M₂.World)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.IntProp.Kripke.IntDPCounterexampleModel.atomic_hereditary
{α : Type u_1}
{M₁ : LO.Kripke.Model α}
{M₂ : LO.Kripke.Model α}
{w₁ : M₁.World}
{w₂ : M₂.World}
(M₁_hered : M₁.Valuation.atomic_hereditary)
(M₂_hered : M₂.Valuation.atomic_hereditary)
:
(LO.IntProp.Kripke.IntDPCounterexampleModel M₁ M₂ w₁ w₂).Valuation.atomic_hereditary
theorem
LO.IntProp.Kripke.satisfies_left_on_IntDPCounterexampleModel
{α : Type u_1}
{p : LO.IntProp.Formula α}
{M₁ : LO.Kripke.Model α}
{M₂ : LO.Kripke.Model α}
{w : M₁.World}
{w₁ : M₁.World}
{w₂ : M₂.World}
:
LO.IntProp.Formula.Kripke.Satisfies M₁ w p ↔ LO.IntProp.Formula.Kripke.Satisfies (LO.IntProp.Kripke.IntDPCounterexampleModel M₁ M₂ w₁ w₂) (Sum.inr (Sum.inl w)) p
theorem
LO.IntProp.Kripke.satisfies_right_on_IntDPCounterexampleModel
{α : Type u_1}
{p : LO.IntProp.Formula α}
{M₁ : LO.Kripke.Model α}
{M₂ : LO.Kripke.Model α}
{w : M₂.World}
{w₁ : M₁.World}
{w₂ : M₂.World}
:
LO.IntProp.Formula.Kripke.Satisfies M₂ w p ↔ LO.IntProp.Formula.Kripke.Satisfies (LO.IntProp.Kripke.IntDPCounterexampleModel M₁ M₂ w₁ w₂) (Sum.inr (Sum.inr w)) p
theorem
LO.IntProp.Kripke.disjunctive_int
{α : Type u_1}
[DecidableEq α]
[Encodable α]
{p : LO.IntProp.Formula α}
{q : LO.IntProp.Formula α}
:
instance
LO.IntProp.Kripke.instDisjunctiveFormulaHilbertIntuitionistic
{α : Type u_1}
[DecidableEq α]
[Encodable α]
:
Equations
- ⋯ = ⋯