Equations
- LO.Propositional.Classical.Formula.verum.neg = LO.Propositional.Classical.Formula.falsum
 - LO.Propositional.Classical.Formula.falsum.neg = LO.Propositional.Classical.Formula.verum
 - (LO.Propositional.Classical.Formula.atom a).neg = LO.Propositional.Classical.Formula.natom a
 - (LO.Propositional.Classical.Formula.natom a).neg = LO.Propositional.Classical.Formula.atom a
 - (φ.and ψ).neg = φ.neg.or ψ.neg
 - (φ.or ψ).neg = φ.neg.and ψ.neg
 
Instances For
Equations
- LO.Propositional.Classical.Formula.verum.toStr = "\\top"
 - LO.Propositional.Classical.Formula.falsum.toStr = "\\bot"
 - (LO.Propositional.Classical.Formula.atom a).toStr = "{" ++ toString a ++ "}"
 - (LO.Propositional.Classical.Formula.natom a).toStr = "\\lnot {" ++ toString a ++ "}"
 - (φ.and ψ).toStr = "\\left(" ++ φ.toStr ++ " \\land " ++ ψ.toStr ++ "\\right)"
 - (φ.or ψ).toStr = "\\left(" ++ φ.toStr ++ " \\lor " ++ ψ.toStr ++ "\\right)"
 
Instances For
Equations
- LO.Propositional.Classical.Formula.instRepr = { reprPrec := fun (t : LO.Propositional.Classical.Formula α) (x : ℕ) => Std.Format.text t.toStr }
 
Equations
Equations
- LO.Propositional.Classical.Formula.verum.complexity = 0
 - LO.Propositional.Classical.Formula.falsum.complexity = 0
 - (LO.Propositional.Classical.Formula.atom a).complexity = 0
 - (LO.Propositional.Classical.Formula.natom a).complexity = 0
 - (φ.and ψ).complexity = φ.complexity ⊔ ψ.complexity + 1
 - (φ.or ψ).complexity = φ.complexity ⊔ ψ.complexity + 1
 
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
def
LO.Propositional.Classical.Formula.cases'
{α : Type u}
{C : Formula α → Sort w}
(hverum : C ⊤)
(hfalsum : C ⊥)
(hatom : (a : α) → C (atom a))
(hnatom : (a : α) → C (natom a))
(hand : (φ ψ : Formula α) → C (φ ⋏ ψ))
(hor : (φ ψ : Formula α) → C (φ ⋎ ψ))
(φ : Formula α)
 :
C φ
Equations
- LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor LO.Propositional.Classical.Formula.verum = hverum
 - LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor LO.Propositional.Classical.Formula.falsum = hfalsum
 - LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor (LO.Propositional.Classical.Formula.atom a) = hatom a
 - LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor (LO.Propositional.Classical.Formula.natom a) = hnatom a
 - LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor (φ.and ψ) = hand φ ψ
 - LO.Propositional.Classical.Formula.cases' hverum hfalsum hatom hnatom hand hor (φ.or ψ) = hor φ ψ
 
Instances For
def
LO.Propositional.Classical.Formula.rec'
{α : Type u}
{C : Formula α → Sort w}
(hverum : C ⊤)
(hfalsum : C ⊥)
(hatom : (a : α) → C (atom a))
(hnatom : (a : α) → C (natom a))
(hand : (φ ψ : Formula α) → C φ → C ψ → C (φ ⋏ ψ))
(hor : (φ ψ : Formula α) → C φ → C ψ → C (φ ⋎ ψ))
(φ : Formula α)
 :
C φ
Equations
- One or more equations did not get rendered due to their size.
 - LO.Propositional.Classical.Formula.rec' hverum hfalsum hatom hnatom hand hor LO.Propositional.Classical.Formula.verum = hverum
 - LO.Propositional.Classical.Formula.rec' hverum hfalsum hatom hnatom hand hor LO.Propositional.Classical.Formula.falsum = hfalsum
 - LO.Propositional.Classical.Formula.rec' hverum hfalsum hatom hnatom hand hor (LO.Propositional.Classical.Formula.atom a) = hatom a
 - LO.Propositional.Classical.Formula.rec' hverum hfalsum hatom hnatom hand hor (LO.Propositional.Classical.Formula.natom a) = hnatom a
 
Instances For
Equations
- One or more equations did not get rendered due to their size.
 
Instances For
@[reducible, inline]
Equations
Instances For
instance
LO.Propositional.Classical.instCollectionFormulaTheory
{α : Type u_1}
 :
Collection (Formula α) (Theory α)