Documentation

Foundation.Propositional.Classical.Basic.Formula

Equations
Instances For
    Equations
    • LO.Propositional.Classical.Formula.instLogicalConnective = LO.LogicalConnective.mk
    Equations
    Instances For
      Equations
      Equations
      • LO.Propositional.Classical.Formula.instToString = { toString := LO.Propositional.Classical.Formula.toStr }
      @[simp]
      theorem LO.Propositional.Classical.Formula.and_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : LO.Propositional.Classical.Formula α) :
      φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
      @[simp]
      theorem LO.Propositional.Classical.Formula.or_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : LO.Propositional.Classical.Formula α) :
      φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
      Equations
      Instances For
        @[simp]
        @[simp]
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_and {α : Type u} (φ ψ : LO.Propositional.Classical.Formula α) :
        (φ ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_and' {α : Type u} (φ ψ : LO.Propositional.Classical.Formula α) :
        (φ.and ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_or {α : Type u} (φ ψ : LO.Propositional.Classical.Formula α) :
        (φ ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_or' {α : Type u} (φ ψ : LO.Propositional.Classical.Formula α) :
        (φ.or ψ).complexity = φ.complexity ψ.complexity + 1
        def LO.Propositional.Classical.Formula.cases' {α : Type u} {C : LO.Propositional.Classical.Formula αSort w} (hverum : C ) (hfalsum : C ) (hatom : (a : α) → C (LO.Propositional.Classical.Formula.atom a)) (hnatom : (a : α) → C (LO.Propositional.Classical.Formula.natom a)) (hand : (φ ψ : LO.Propositional.Classical.Formula α) → C (φ ψ)) (hor : (φ ψ : LO.Propositional.Classical.Formula α) → C (φ ψ)) (φ : LO.Propositional.Classical.Formula α) :
        C φ
        Equations
        Instances For
          def LO.Propositional.Classical.Formula.rec' {α : Type u} {C : LO.Propositional.Classical.Formula αSort w} (hverum : C ) (hfalsum : C ) (hatom : (a : α) → C (LO.Propositional.Classical.Formula.atom a)) (hnatom : (a : α) → C (LO.Propositional.Classical.Formula.natom a)) (hand : (φ ψ : LO.Propositional.Classical.Formula α) → C φC ψC (φ ψ)) (hor : (φ ψ : LO.Propositional.Classical.Formula α) → C φC ψC (φ ψ)) (φ : LO.Propositional.Classical.Formula α) :
          C φ
          Equations
          Instances For
            @[simp]
            theorem LO.Propositional.Classical.Formula.complexity_neg {α : Type u} (φ : LO.Propositional.Classical.Formula α) :
            (φ).complexity = φ.complexity
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • LO.Propositional.Classical.Formula.instDecidableEq = LO.Propositional.Classical.Formula.hasDecEq
              theorem LO.Propositional.Classical.Formula.ne_of_ne_complexity {α : Type u} {φ ψ : LO.Propositional.Classical.Formula α} (h : φ.complexity ψ.complexity) :
              φ ψ
              @[reducible, inline]
              Equations
              Instances For
                Equations
                • LO.Propositional.Classical.instCollectionFormulaTheory = inferInstance