Documentation

Foundation.Propositional.Classical.Basic.Formula

Instances For
    theorem LO.Propositional.Classical.Formula.neg_neg {α : Type u} (φ : Formula α) :
    φ.neg.neg = φ
    Equations
    Instances For
      @[simp]
      theorem LO.Propositional.Classical.Formula.neg_and {α : Type u} (φ ψ : Formula α) :
      (φ ψ) = φ ψ
      @[simp]
      theorem LO.Propositional.Classical.Formula.neg_or {α : Type u} (φ ψ : Formula α) :
      (φ ψ) = φ ψ
      @[simp]
      @[simp]
      theorem LO.Propositional.Classical.Formula.neg_inj {α : Type u} (φ ψ : Formula α) :
      φ = ψ φ = ψ
      theorem LO.Propositional.Classical.Formula.imp_eq {α : Type u} (φ ψ : Formula α) :
      φ ψ = φ ψ
      theorem LO.Propositional.Classical.Formula.iff_eq {α : Type u} (φ ψ : Formula α) :
      φ ψ = (φ ψ) (ψ φ)
      @[simp]
      theorem LO.Propositional.Classical.Formula.and_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
      φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
      @[simp]
      theorem LO.Propositional.Classical.Formula.or_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
      φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
      Equations
      Instances For
        @[simp]
        @[simp]
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_atom {α : Type u} (a : α) :
        (atom a).complexity = 0
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_natom {α : Type u} (a : α) :
        (natom a).complexity = 0
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_and {α : Type u} (φ ψ : Formula α) :
        (φ ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_and' {α : Type u} (φ ψ : Formula α) :
        (φ.and ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_or {α : Type u} (φ ψ : Formula α) :
        (φ ψ).complexity = φ.complexity ψ.complexity + 1
        @[simp]
        theorem LO.Propositional.Classical.Formula.complexity_or' {α : Type u} (φ ψ : Formula α) :
        (φ.or ψ).complexity = φ.complexity ψ.complexity + 1
        def LO.Propositional.Classical.Formula.cases' {α : Type u} {C : Formula αSort w} (hverum : C ) (hfalsum : C ) (hatom : (a : α) → C (atom a)) (hnatom : (a : α) → C (natom a)) (hand : (φ ψ : Formula α) → C (φ ψ)) (hor : (φ ψ : Formula α) → C (φ ψ)) (φ : Formula α) :
        C φ
        Equations
        Instances For
          def LO.Propositional.Classical.Formula.rec' {α : Type u} {C : Formula αSort w} (hverum : C ) (hfalsum : C ) (hatom : (a : α) → C (atom a)) (hnatom : (a : α) → C (natom a)) (hand : (φ ψ : Formula α) → C φC ψC (φ ψ)) (hor : (φ ψ : Formula α) → C φC ψC (φ ψ)) (φ : Formula α) :
          C φ
          Equations
          Instances For
            @[simp]
            theorem LO.Propositional.Classical.Formula.complexity_neg {α : Type u} (φ : Formula α) :
            (φ).complexity = φ.complexity
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem LO.Propositional.Classical.Formula.ne_of_ne_complexity {α : Type u} {φ ψ : Formula α} (h : φ.complexity ψ.complexity) :
              φ ψ
              @[reducible, inline]
              Equations
              Instances For