Canonically ordered semifields #
@[deprecated "Use `[LinearOrderedSemifield α] [CanonicallyOrderedAdd α]` instead." (since := "2025-01-13")]
structure
CanonicallyLinearOrderedSemifield
(α : Type u_1)
extends CanonicallyOrderedCommSemiring α, LinearOrderedSemifield α :
Type u_1
A canonically linear ordered field is a linear ordered field in which a ≤ b iff there exists
c with b = a + c.
- add : α → α → α
 - zero : α
 - bot : α
 - mul : α → α → α
 - one : α
 - natCast_zero : NatCast.natCast 0 = 0
 - exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
 - zero_le_one : 0 ≤ 1
 - min : α → α → α
 - max : α → α → α
 - decidableLE : DecidableRel fun (x1 x2 : α) => x1 ≤ x2
 - decidableLT : DecidableRel fun (x1 x2 : α) => x1 < x2
 - inv : α → α
 - div : α → α → α
 
Instances For
@[reducible, inline]
abbrev
LinearOrderedSemifield.toLinearOrderedCommGroupWithZero
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
 :
Construct a LinearOrderedCommGroupWithZero from a canonically ordered
LinearOrderedSemifield.
Equations
Instances For
theorem
tsub_div
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
(a b c : α)
 :