Documentation

Mathlib.Algebra.Order.GroupWithZero.Canonical

Linearly ordered commutative groups and monoids with a zero element adjoined #

This file sets up a special class of linearly ordered commutative monoids that show up as the target of so-called “valuations” in algebraic number theory.

Usually, in the informal literature, these objects are constructed by taking a linearly ordered commutative group Γ and formally adjoining a zero element: Γ ∪ {0}.

The disadvantage is that a type such as NNReal is not of that form, whereas it is a very common target for valuations. The solutions is to use a typeclass, and that is exactly what we do in this file.

A linearly ordered commutative monoid with a zero element.

Instances

A linearly ordered commutative group with a zero element.

Instances
@[reducible, inline]
abbrev Function.Injective.linearOrderedCommMonoidWithZero {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {β : Type u_2} [Zero β] [One β] [Mul β] [Pow β ] [Max β] [Min β] (f : βα) (hf : Injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (hsup : ∀ (x y : β), f (x y) = f x f y) (hinf : ∀ (x y : β), f (x y) = f x f y) :

Pullback a LinearOrderedCommMonoidWithZero under an injective map. See note [reducible non-instances].

Equations
@[simp]
theorem zero_le' {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
0 a
@[simp]
theorem not_lt_zero' {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
¬a < 0
@[simp]
theorem le_zero_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
a 0 a = 0
theorem zero_lt_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
0 < a a 0
theorem ne_zero_of_lt {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a b : α} (h : b < a) :
a 0
theorem pow_pos_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} {n : } [NoZeroDivisors α] (hn : n 0) :
0 < a ^ n 0 < a
@[deprecated mul_inv_le_of_le_mul₀ (since := "2024-11-18")]
theorem mul_inv_le_of_le_mul {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (hab : a b * c) :
a * c⁻¹ b
@[simp]
theorem Units.zero_lt {α : Type u_1} [LinearOrderedCommGroupWithZero α] (u : αˣ) :
0 < u
@[deprecated mul_lt_mul_of_le_of_lt_of_nonneg_of_pos (since := "2024-11-18")]
theorem mul_lt_mul_of_lt_of_le₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c d : α} (hab : a b) (hb : b 0) (hcd : c < d) :
a * c < b * d
@[deprecated mul_lt_mul'' (since := "2024-11-18")]
theorem mul_lt_mul₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c d : α} (hab : a < b) (hcd : c < d) :
a * c < b * d
theorem mul_inv_lt_of_lt_mul₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (h : a < b * c) :
a * c⁻¹ < b
theorem inv_mul_lt_of_lt_mul₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (h : a < b * c) :
b⁻¹ * a < c
theorem lt_of_mul_lt_mul_of_le₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c d : α} (h : a * b < c * d) (hc : 0 < c) (hh : c a) :
b < d
@[deprecated div_le_div_iff_of_pos_right (since := "2024-11-18")]
theorem div_le_div_right₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (hc : c 0) :
a / c b / c a b
@[deprecated div_le_div_iff_of_pos_left (since := "2024-11-18")]
theorem div_le_div_left₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (ha : a 0) (hb : b 0) (hc : c 0) :
a / b a / c c b
@[deprecated OrderIso.mulLeft₀ (since := "2024-11-18")]
def OrderIso.mulLeft₀' {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
α ≃o α

Equiv.mulLeft₀ as an OrderIso on a LinearOrderedCommGroupWithZero..

Equations
@[simp]
theorem OrderIso.mulLeft₀'_apply {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) (x : α) :
(mulLeft₀' ha) x = a * x
@[simp]
theorem OrderIso.mulLeft₀'_toEquiv {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
(mulLeft₀' ha).toEquiv = Equiv.mulLeft₀ a
@[deprecated OrderIso.mulLeft₀_symm (since := "2024-11-18")]
theorem OrderIso.mulLeft₀'_symm {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
(mulLeft₀' ha).symm = mulLeft₀'
@[deprecated OrderIso.mulRight₀ (since := "2024-11-18")]
def OrderIso.mulRight₀' {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
α ≃o α

Equiv.mulRight₀ as an OrderIso on a LinearOrderedCommGroupWithZero..

Equations
@[simp]
theorem OrderIso.mulRight₀'_apply {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) (x : α) :
(mulRight₀' ha) x = x * a
@[simp]
theorem OrderIso.mulRight₀'_toEquiv {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
(mulRight₀' ha).toEquiv = Equiv.mulRight₀ a
@[deprecated OrderIso.mulRight₀_symm (since := "2024-11-18")]
theorem OrderIso.mulRight₀'_symm {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} (ha : a 0) :
@[deprecated pow_lt_pow_right₀ (since := "2024-11-18")]
theorem pow_lt_pow_succ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a : α} {n : } (ha : 1 < a) :
a ^ n < a ^ n.succ
@[simp]
theorem ofAdd_toDual_eq_zero_iff {α : Type u_1} [LinearOrderedAddCommMonoidWithTop α] (x : α) :
Multiplicative.ofAdd (OrderDual.toDual x) = 0 x =
@[simp]
theorem ofDual_toAdd_eq_top_iff {α : Type u_1} [LinearOrderedAddCommMonoidWithTop α] (x : Multiplicative αᵒᵈ) :
OrderDual.ofDual (Multiplicative.toAdd x) = x = 0
@[simp]
theorem ofAdd_bot {α : Type u_1} [LinearOrderedAddCommMonoidWithTop α] :
Multiplicative.ofAdd = 0
@[simp]
theorem ofDual_toAdd_zero {α : Type u_1} [LinearOrderedAddCommMonoidWithTop α] :
OrderDual.ofDual (Multiplicative.toAdd 0) =
theorem WithZero.zero_le {α : Type u_1} [Preorder α] (a : WithZero α) :
0 a
theorem WithZero.zero_lt_coe {α : Type u_1} [Preorder α] (a : α) :
0 < a
theorem WithZero.zero_eq_bot {α : Type u_1} [Preorder α] :
0 =
@[simp]
theorem WithZero.coe_lt_coe {α : Type u_1} [Preorder α] {a b : α} :
a < b a < b
@[simp]
theorem WithZero.coe_le_coe {α : Type u_1} [Preorder α] {a b : α} :
a b a b
@[simp]
theorem WithZero.one_lt_coe {α : Type u_1} [Preorder α] {a : α} [One α] :
1 < a 1 < a
@[simp]
theorem WithZero.one_le_coe {α : Type u_1} [Preorder α] {a : α} [One α] :
1 a 1 a
@[simp]
theorem WithZero.coe_lt_one {α : Type u_1} [Preorder α] {a : α} [One α] :
a < 1 a < 1
@[simp]
theorem WithZero.coe_le_one {α : Type u_1} [Preorder α] {a : α} [One α] :
a 1 a 1
theorem WithZero.coe_le_iff {α : Type u_1} [Preorder α] {a : α} {x : WithZero α} :
a x ∃ (b : α), x = b a b
@[simp]
theorem WithZero.unzero_le_unzero {α : Type u_1} [Preorder α] {a b : WithZero α} (ha : a 0) (hb : b 0) :
unzero ha unzero hb a b
theorem WithZero.addLeftMono {α : Type u_1} [Preorder α] [AddZeroClass α] [AddLeftMono α] (h : ∀ (a : α), 0 a) :
theorem WithZero.le_max_iff {α : Type u_1} [LinearOrder α] {a b c : α} :
a b c a b c
theorem WithZero.min_le_iff {α : Type u_1} [LinearOrder α] {a b c : α} :
a b c a b c
@[reducible, inline]
abbrev WithZero.orderedAddCommMonoid {α : Type u_1} [OrderedAddCommMonoid α] (zero_le : ∀ (a : α), 0 a) :

If 0 is the least element in α, then WithZero α is an OrderedAddCommMonoid.

Equations

Adding a new zero to a canonically ordered additive monoid produces another one.

Notation for WithZero (Multiplicative ℕ)

Equations

Notation for WithZero (Multiplicative ℤ)

Equations