α-type provability logic extension
Equations
- L.αPL X = L.sumQuasiNormal (LO.Modal.TBB '' X)
Instances For
instance
LO.Modal.Logic.instSubstitutionNatImageFormulaTBB
{X : Set ℕ}
:
Logic.Substitution (TBB '' X)
theorem
LO.Modal.Logic.αPL_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
{L : Logic ℕ}
{X : Set ℕ}
[L.Substitution]
(hPL : L.IsProvabilityLogic T U)
:
(L.αPL X).IsProvabilityLogic T (U + (fun (x : ℕ) => ↑T.LetterlessStandardRealization (TBB x)) '' X)
theorem
LO.ProvabilityLogic.subset_GLαω_of_omega_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
:
Corollary 50 (half) in [A.B05]
theorem
LO.ProvabilityLogic.subset_D_of_subset_GLαβ_of_omega_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
:
Modal.GLαω ⊂ L → Modal.D ⊆ L
- Corollary 52(2) in [A.B05]
theorem
LO.ProvabilityLogic.no_logic_between_GLαω_D
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
:
- Corollary 55 in [A.B05]
theorem
LO.ProvabilityLogic.eq_S_of_not_subset_D_of_omega_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
:
- Assertion 1 in [Bek90]
theorem
LO.ProvabilityLogic.no_logic_between_D_S
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
:
- Corollary 58 in [A.B05]
theorem
LO.ProvabilityLogic.classification_S_sublogics_of_omega_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
(hPL : L.IsProvabilityLogic T U)
(hT : L.trace = Set.univ)
(L_subset_S : L ⊆ Modal.S)
:
If L.trace is omega then L is one of GLαω, D, and S.
- Assertion 3 in [Bek90]
theorem
LO.ProvabilityLogic.eq_inter_αPL_GLβMinus_of_isProvabilityLogic_of_cofinite_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
[L.Substitution]
(hPL : L.IsProvabilityLogic T U)
(hCf : L.trace.Cofinite)
:
Let L be provability logic L.trace is cofinite.
Then L = (L.αPL L.traceᶜ) ∩ (GLβMinus L.trace).
theorem
LO.ProvabilityLogic.eq_GLαω_inter_GLβMinus_GLα
{L : Modal.Logic ℕ}
(hβ : L.trace.Cofinite)
:
theorem
LO.ProvabilityLogic.aPL_compl_trace_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
{L : Modal.Logic ℕ}
[L.Substitution]
(hPL : L.IsProvabilityLogic T U)
:
theorem
LO.ProvabilityLogic.classification_S_sublogics_of_cofinite_trace
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
{L : Modal.Logic ℕ}
[L.Substitution]
(hPL : L.IsProvabilityLogic T U)
(hCf : L.trace.Cofinite)
(hS : L ⊆ Modal.S)
:
theorem
LO.ProvabilityLogic.classification_provability_logics
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(L : Modal.Logic ℕ)
[L.Substitution]
(hPL : L.IsProvabilityLogic T U)
:
The classification theorem of provability logics.
- Assertion 6 in [Bek90]
- Theorem 40 in [A.B05]