Documentation

Foundation.FirstOrder.Basic.Calculus2

Derivation2 #

Different characterizations of proof.

inductive LO.FirstOrder.Derivation2 {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] (T : Theory L) :
Instances For
@[reducible, inline]
abbrev LO.FirstOrder.Derivable2 {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] (T : Theory L) (Γ : Finset (SyntacticFormula L)) :
Equations
@[reducible, inline]
abbrev LO.FirstOrder.Derivable2SingleConseq {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] (T : Theory L) (φ : SyntacticFormula L) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.FirstOrder.Derivation2.toDerivation {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] {T : Theory L} {Γ : Finset (SyntacticFormula L)} :
Derivation2 T ΓT Γ.toList
Equations
theorem LO.FirstOrder.derivable_iff_derivable2 {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] {T : Theory L} {Γ : List (SyntacticFormula L)} :
T ⟹! Γ Derivable2 T Γ.toFinset
def LO.FirstOrder.provable_iff_derivable2 {L : Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] {T : Theory L} {φ : SyntacticFormula L} :
Equations
  • =