def
LO.FirstOrder.Derivation2.cast
{L : Language}
{Γ Δ : Finset (SyntacticFormula L)}
[L.DecidableEq]
{T : Theory L}
(d : Derivation2 T Γ)
(h : Γ = Δ)
:
Derivation2 T Δ
Equations
- d.cast h = h ▸ d
Instances For
noncomputable def
LO.FirstOrder.Derivation2.Sequent.codeIn
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
(Γ : Finset (SyntacticFormula L))
:
V
Equations
- LO.FirstOrder.Derivation2.Sequent.codeIn V Γ = ∑ φ ∈ Γ, exp ⌜φ⌝
Instances For
noncomputable instance
LO.FirstOrder.Derivation2.instGoedelQuoteFinsetSyntacticFormula_incompleteness
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
:
GoedelQuote (Finset (SyntacticFormula L)) V
theorem
LO.FirstOrder.Derivation2.setShift_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[Arith.DefinableLanguage L]
(Γ : Finset (SyntacticFormula L))
:
(L.codeIn V).setShift ⌜Γ⌝ = ⌜Finset.image Rewriting.shift Γ⌝
def
LO.FirstOrder.Derivation2.codeIn
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{T : Theory L}
[L.DecidableEq]
{Γ : Finset (SyntacticFormula L)}
:
Derivation2 T Γ → V
Equations
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.closed x✝ φ a a_1) = LO.Arith.axL ⌜x✝⌝ ⌜φ⌝
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.root φ a a_1) = LO.Arith.root ⌜x✝⌝ ⌜φ⌝
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.verum a) = LO.Arith.verumIntro ⌜x✝⌝
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.and a bp bq) = LO.Arith.andIntro ⌜x✝⌝ ⌜φ⌝ ⌜ψ⌝ (LO.FirstOrder.Derivation2.codeIn V bp) (LO.FirstOrder.Derivation2.codeIn V bq)
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.or a d) = LO.Arith.orIntro ⌜x✝⌝ ⌜φ⌝ ⌜ψ⌝ (LO.FirstOrder.Derivation2.codeIn V d)
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.all a d) = LO.Arith.allIntro ⌜x✝⌝ ⌜φ⌝ (LO.FirstOrder.Derivation2.codeIn V d)
- LO.FirstOrder.Derivation2.codeIn V (LO.FirstOrder.Derivation2.ex a t d) = LO.Arith.exIntro ⌜x✝⌝ ⌜φ⌝ ⌜t⌝ (LO.FirstOrder.Derivation2.codeIn V d)
- LO.FirstOrder.Derivation2.codeIn V (d.wk a) = LO.Arith.wkRule ⌜x✝⌝ (LO.FirstOrder.Derivation2.codeIn V d)
- LO.FirstOrder.Derivation2.codeIn V d.shift = LO.Arith.shiftRule ⌜Finset.image LO.FirstOrder.Rewriting.shift Δ⌝ (LO.FirstOrder.Derivation2.codeIn V d)
- LO.FirstOrder.Derivation2.codeIn V (d.cut dn) = LO.Arith.cutRule ⌜x✝⌝ ⌜φ⌝ (LO.FirstOrder.Derivation2.codeIn V d) (LO.FirstOrder.Derivation2.codeIn V dn)
Instances For
instance
LO.FirstOrder.Derivation2.instGoedelQuote_incompleteness
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{T : Theory L}
(Γ : Finset (SyntacticFormula L))
:
GoedelQuote (Derivation2 T Γ) V
Equations
theorem
LO.FirstOrder.Derivation2.quote_derivation_def
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{T : Theory L}
{Γ : Finset (SyntacticFormula L)}
(d : Derivation2 T Γ)
:
@[simp]
theorem
LO.FirstOrder.Derivation2.fstidx_quote
(V : Type u_1)
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{T : Theory L}
{Γ : Finset (SyntacticFormula L)}
(d : Derivation2 T Γ)
:
@[simp]
theorem
LO.Arith.formulaSet_codeIn_finset
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
(Γ : Finset (FirstOrder.SyntacticFormula L))
:
theorem
LO.Arith.quote_image_shift
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
[L.DecidableEq]
(Γ : Finset (FirstOrder.SyntacticFormula L))
:
(L.codeIn V).setShift ⌜Γ⌝ = ⌜Finset.image FirstOrder.Rewriting.shift Γ⌝
@[simp]
theorem
LO.Arith.derivation_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
[L.DecidableEq]
{Γ : Finset (FirstOrder.SyntacticFormula L)}
(d : FirstOrder.Derivation2 T Γ)
:
(FirstOrder.Theory.codeIn V T).Derivation ⌜d⌝
@[simp]
theorem
LO.Arith.derivationOf_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{Γ : Finset (FirstOrder.SyntacticFormula L)}
(d : FirstOrder.Derivation2 T Γ)
:
(FirstOrder.Theory.codeIn V T).DerivationOf ⌜d⌝ ⌜Γ⌝
theorem
LO.Arith.derivable_of_quote
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{Γ : Finset (FirstOrder.SyntacticFormula L)}
(d : FirstOrder.Derivation2 T Γ)
:
(FirstOrder.Theory.codeIn V T).Derivable ⌜Γ⌝
theorem
LO.Arith.provable_of_provable
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{φ : FirstOrder.SyntacticFormula L}
:
T ⊢! φ → (FirstOrder.Theory.codeIn V T).Provable ⌜φ⌝
theorem
LO.Arith.tprovable_of_provable
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{φ : FirstOrder.SyntacticFormula L}
:
T ⊢! φ → FirstOrder.Theory.tCodeIn V T ⊢! ⌜φ⌝
Hilbert–Bernays provability condition D1
theorem
LO.Arith.provableₐ_of_provable
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{T : FirstOrder.Theory ℒₒᵣ}
[T.Delta1Definable]
{σ : FirstOrder.SyntacticFormula ℒₒᵣ}
:
theorem
LO.Arith.isFormulaSet_sound
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{s : ℕ}
:
theorem
LO.Arith.Language.Theory.Derivation.sound
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{d : ℕ}
(h : (FirstOrder.Theory.codeIn ℕ T).Derivation d)
:
∃ (Γ : Finset (FirstOrder.SyntacticFormula L)), ⌜Γ⌝ = fstIdx d ∧ FirstOrder.Derivable2 T Γ
theorem
LO.Arith.Language.Theory.Provable.sound2
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{φ : FirstOrder.SyntacticFormula L}
(h : (FirstOrder.Theory.codeIn ℕ T).Provable ⌜φ⌝)
:
theorem
LO.Arith.Language.Theory.Provable.sound
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{φ : FirstOrder.SyntacticFormula L}
(h : (FirstOrder.Theory.codeIn ℕ T).Provable ⌜φ⌝)
:
T ⊢! φ
theorem
LO.Arith.Language.Theory.Provable.sound₀
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{σ : FirstOrder.Sentence L}
(h : (FirstOrder.Theory.codeIn ℕ T).Provable ⌜σ⌝)
:
T ⊢! ↑σ
theorem
LO.Arith.Language.Theory.Provable.complete
{L : FirstOrder.Language}
[L.DecidableEq]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[DefinableLanguage L]
{T : FirstOrder.Theory L}
[T.Delta1Definable]
{φ : FirstOrder.SyntacticFormula L}
: