Documentation

Incompleteness.Arith.D1

Equations
  • d.cast h = hd
Instances For
    Equations
    Instances For
      @[simp]
      theorem LO.FirstOrder.Derivation2.Sequent.mem_codeIn {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {x : V} {Γ : Finset (LO.FirstOrder.SyntacticFormula L)} (hx : x Γ) :
      pΓ, x = p
      theorem LO.FirstOrder.Derivation2.Sequent.mem_codeIn_iff' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {x : V} {Γ : Finset (LO.FirstOrder.SyntacticFormula L)} :
      x Γ pΓ, x = p
      theorem LO.FirstOrder.Derivation2.setShift_quote {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] (Γ : Finset (LO.FirstOrder.SyntacticFormula L)) :
      (L.codeIn V).setShift Γ = Finset.image ((LO.FirstOrder.Rew.hom LO.FirstOrder.Rew.shift)) Γ
      Equations
      Instances For
        @[simp]
        theorem LO.Arith.formulaSet_codeIn_finset {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] (Γ : Finset (LO.FirstOrder.SyntacticFormula L)) :
        (L.codeIn V).IsFormulaSet Γ
        theorem LO.Arith.quote_image_shift {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] (Γ : Finset (LO.FirstOrder.SyntacticFormula L)) :
        (L.codeIn V).setShift Γ = Finset.image ((LO.FirstOrder.Rew.hom LO.FirstOrder.Rew.shift)) Γ
        @[simp]
        theorem LO.Arith.derivation_quote {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] {T : LO.FirstOrder.Theory L} [T.Delta1Definable] {Γ : Finset (LO.FirstOrder.SyntacticFormula L)} (d : LO.FirstOrder.Derivation2 T Γ) :
        @[simp]
        theorem LO.Arith.derivationOf_quote {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] {T : LO.FirstOrder.Theory L} [T.Delta1Definable] {Γ : Finset (LO.FirstOrder.SyntacticFormula L)} (d : LO.FirstOrder.Derivation2 T Γ) :
        theorem LO.Arith.provable_of_provable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] {T : LO.FirstOrder.Theory L} [T.Delta1Definable] {p : LO.FirstOrder.SyntacticFormula L} :
        T ⊢! p(LO.FirstOrder.Theory.codeIn V T).Provable p

        Hilbert–Bernays provability condition D1

        theorem Nat.double_add_one_div_of_double (n : ) (m : ) :
        (2 * n + 1) / (2 * m) = n / m
        theorem Nat.mem_bitIndices_iff {x : } {s : } :
        x s.bitIndices Odd (s / 2 ^ x)
        theorem LO.Arith.isFormulaSet_sound {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] {s : } :
        (L.codeIn ).IsFormulaSet s∃ (S : Finset (LO.FirstOrder.SyntacticFormula L)), S = s
        theorem LO.Arith.Language.Theory.Provable.sound₀ {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [LO.Arith.DefinableLanguage L] {T : LO.FirstOrder.Theory L} [T.Delta1Definable] {σ : LO.FirstOrder.Sentence L} (h : (LO.FirstOrder.Theory.codeIn T).Provable σ) :
        T ⊢! σ