Documentation

Arithmetization.ISigmaOne.HFS.Basic

Hereditary Finite Set Theory in IΣ1 #

@[simp]
theorem LO.Arith.susbset_insert {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x a : V) :
a insert x a
@[simp]
theorem LO.Arith.bitRemove_susbset {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x a : V) :
theorem LO.Arith.lt_of_mem_dom {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y m : V} (h : x, y m) :
x < m
theorem LO.Arith.lt_of_mem_rng {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y m : V} (h : x, y m) :
y < m
theorem LO.Arith.insert_subset_insert_of_subset {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b : V} (x : V) (h : a b) :
insert x a insert x b
@[simp]
theorem LO.Arith.sUnion_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
∃! u : V, ∀ (x : V), x u ts, x t
def LO.Arith.sUnion {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
V
Equations
@[simp]
theorem LO.Arith.mem_sUnion_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b : V} :
a ⋃ʰᶠ b cb, a c
theorem LO.Arith.sUnion_lt_of_pos {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a : V} (ha : 0 < a) :
@[simp]
theorem LO.Arith.sUnion_le {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
theorem LO.Arith.sUnion_graph {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {u s : V} :
u = ⋃ʰᶠ s x < u + s, x u ts, x t
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.union {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
V
Equations
@[simp]
theorem LO.Arith.mem_cup_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b c : V} :
a b c a b a c
Equations
  • One or more equations did not get rendered due to their size.
instance LO.Arith.union_definable {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
𝚺₀-Function₂ fun (x1 x2 : V) => x1 x2
@[simp]
theorem LO.Arith.union_polybound {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
a b 2 * (a + b)
theorem LO.Arith.union_comm {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
a b = b a
@[simp]
theorem LO.Arith.union_succ_union_left {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
a a b
@[simp]
theorem LO.Arith.union_succ_union_right {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
b a b
@[simp]
theorem LO.Arith.union_succ_union_union_left {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b c : V) :
a a b c
@[simp]
theorem LO.Arith.union_succ_union_union_right {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b c : V) :
b a b c
@[simp]
theorem LO.Arith.union_empty_eq_right {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
a = a
@[simp]
theorem LO.Arith.union_empty_eq_left {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
a = a
theorem LO.Arith.sInter_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
∃! u : V, ∀ (x : V), x u s ts, x t
def LO.Arith.sInter {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
V
Equations
theorem LO.Arith.mem_sInter_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x s : V} :
x ⋂ʰᶠ s s ts, x t
theorem LO.Arith.mem_sInter_iff_of_pos {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x s : V} (h : s ) :
x ⋂ʰᶠ s ts, x t
def LO.Arith.inter {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
V
Equations
@[simp]
theorem LO.Arith.mem_inter_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b c : V} :
a b c a b a c
theorem LO.Arith.inter_comm {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
a b = b a
theorem LO.Arith.inter_eq_self_of_subset {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b : V} (h : a b) :
a b = a
theorem LO.Arith.product_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
∃! u : V, ∀ (x : V), x u ya, zb, x = y, z
def LO.Arith.product {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
V
Equations
theorem LO.Arith.mem_product_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x a b : V} :
x a ×ʰᶠ b ya, zb, x = y, z
theorem LO.Arith.mem_product_iff' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x a b : V} :
@[simp]
theorem LO.Arith.pair_mem_product_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y a b : V} :
x, y a ×ʰᶠ b x a y b
theorem LO.Arith.pair_mem_product {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y a b : V} (hx : x a) (hy : y b) :
x, y a ×ʰᶠ b
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.domain_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
∃! d : V, ∀ (x : V), x d ∃ (y : V), x, y s
theorem LO.Arith.mem_domain_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x s : V} :
x domain s ∃ (y : V), x, y s
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.Arith.domain_union {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a b : V) :
@[simp]
theorem LO.Arith.domain_singleton {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x y : V) :
domain {x, y} = {x}
@[simp]
theorem LO.Arith.domain_insert {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x y s : V) :
domain (insert x, y s) = insert x (domain s)
@[simp]
theorem LO.Arith.domain_bound {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
domain s 2 * s
theorem LO.Arith.mem_domain_of_pair_mem {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y s : V} (h : x, y s) :

Range #

theorem LO.Arith.range_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s : V) :
∃! r : V, ∀ (y : V), y r ∃ (x : V), x, y s
theorem LO.Arith.mem_range_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {y s : V} :
y range s ∃ (x : V), x, y s
Equations
  • One or more equations did not get rendered due to their size.

Disjoint #

def LO.Arith.Disjoint {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (s t : V) :
Equations
theorem LO.Arith.Disjoint.iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {s t : V} :
Disjoint s t ∀ (x : V), xs xt
theorem LO.Arith.Disjoint.not_of_mem {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {s t x : V} (hs : x s) (ht : x t) :
theorem LO.Arith.Disjoint.symm {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {s t : V} (h : Disjoint s t) :
@[simp]
theorem LO.Arith.Disjoint.singleton_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {s a : V} :
Disjoint {a} s as

Mapping #

Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.IsMapping.get_exists_uniq {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} (h : IsMapping m) {x : V} (hx : x domain m) :
∃! y : V, x, y m
def LO.Arith.IsMapping.get {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} (h : IsMapping m) {x : V} (hx : x domain m) :
V
Equations
@[simp]
theorem LO.Arith.IsMapping.get_mem {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} (h : IsMapping m) {x : V} (hx : x domain m) :
x, h.get hx m
theorem LO.Arith.IsMapping.get_uniq {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {y m : V} (h : IsMapping m) {x : V} (hx : x domain m) (hy : x, y m) :
y = h.get hx
theorem LO.Arith.IsMapping.union_of_disjoint_domain {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m₁ m₂ : V} (h₁ : IsMapping m₁) (h₂ : IsMapping m₂) (disjoint : Disjoint (domain m₁) (domain m₂)) :
IsMapping (m₁ m₂)
@[simp]
theorem LO.Arith.IsMapping.singleton {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x y : V) :
IsMapping {x, y}
theorem LO.Arith.IsMapping.insert {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y m : V} (h : IsMapping m) (disjoint : xdomain m) :
IsMapping (Insert.insert x, y m)
theorem LO.Arith.IsMapping.of_subset {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m m' : V} (h : IsMapping m) (ss : m' m) :
theorem LO.Arith.IsMapping.uniq {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m x y₁ y₂ : V} (h : IsMapping m) :
x, y₁ mx, y₂ my₁ = y₂

Restriction of mapping #

theorem LO.Arith.restr_exists_unique {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f s : V) :
∃! g : V, ∀ (x : V), x g x f π₁ x s
def LO.Arith.restr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f s : V) :
V
Equations
theorem LO.Arith.mem_restr_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x f s : V} :
x restr f s x f π₁ x s
@[simp]
theorem LO.Arith.pair_mem_restr_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x y f s : V} :
x, y restr f s x, y f x s
@[simp]
theorem LO.Arith.restr_empty {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f : V) :
@[simp]
theorem LO.Arith.restr_subset_self {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f s : V) :
restr f s f
@[simp]
theorem LO.Arith.restr_le_self {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f s : V) :
restr f s f
theorem LO.Arith.IsMapping.restr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} (h : IsMapping m) (s : V) :
theorem LO.Arith.domain_restr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (f s : V) :
domain (restr f s) = domain f s
theorem LO.Arith.insert_induction {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : SigmaPiDelta} {P : VProp} (hP : { Γ := Γ, rank := 1 }-Predicate P) (hempty : P ) (hinsert : ∀ (a s : V), asP sP (insert a s)) (s : V) :
P s
theorem LO.Arith.insert_induction_sigmaOne {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {P : VProp} (hP : 𝚺₁-Predicate P) (hempty : P ) (hinsert : ∀ (a s : V), asP sP (insert a s)) (s : V) :
P s
theorem LO.Arith.insert_induction_piOne {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {P : VProp} (hP : 𝚷₁-Predicate P) (hempty : P ) (hinsert : ∀ (a s : V), asP sP (insert a s)) (s : V) :
P s
theorem LO.Arith.sigmaOne_skolem {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {R : VVProp} (hP : 𝚺₁-Relation R) {s : V} (H : xs, ∃ (y : V), R x y) :
∃ (f : V), IsMapping f domain f = s ∀ (x y : V), x, y fR x y
theorem LO.Arith.sigma₁_replacement {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {f : VV} (hf : 𝚺₁-Function₁ f) (s : V) :
∃! t : V, ∀ (y : V), y t xs, y = f x
theorem LO.Arith.sigma₁_replacement₂ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {f : VVV} (hf : 𝚺₁-Function₂ f) (s₁ s₂ : V) :
∃! t : V, ∀ (y : V), y t x₁s₁, x₂s₂, y = f x₁ x₂
@[simp]
theorem LO.Arith.fstIdx_le_self {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p : V) :
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.Arith.sndIdx_le_self {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p : V) :
Equations
  • One or more equations did not get rendered due to their size.