Documentation

Incompleteness.Arith.Theory

Formalized $\Sigma_1$-Completeness #

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          def LO.Arith.singleton {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] (φ : FirstOrder.SyntacticFormula L) :
          {φ}.Delta1Definable
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def LO.Arith.Formalized.Theory.CobhamR0'.Ω₁ :
              FirstOrder.Theory.Delta1Definable {φ : FirstOrder.SyntacticFormula ℒₒᵣ | ∃ (n : ) (m : ), φ = (“(!!n + !!m) = !!(n + m)”)}
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def LO.Arith.Formalized.Theory.CobhamR0'.Ω₂ :
                FirstOrder.Theory.Delta1Definable {φ : FirstOrder.SyntacticFormula ℒₒᵣ | ∃ (n : ) (m : ), φ = (“(!!n * !!m) = !!(n * m)”)}
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def LO.Arith.Formalized.Theory.CobhamR0'.replace.proof {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (φ : ⌜ℒₒᵣ⌝.Semiformula (0 + 1)) :
                        ⌜𝐑₀'⌝ ((bv 1 ).equals (bv 0 ) φ^/[(bv 1 ).sing] φ^/[(bv 0 ).sing]).all.all
                        Equations
                        Instances For
                          def LO.Arith.Formalized.Theory.CobhamR0'.Ω₄.proof {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (n : V) :
                          ⌜𝐑₀'⌝ ((bv 0 ).lessThan (typedNumeral (0 + 1) n) (tSubstItr (bv 0 ).sing ((bv 1 ).equals (bv 0 )) n).disj).all
                          Equations
                          Instances For
                            @[reducible, inline]
                            abbrev LO.FirstOrder.Theory.AddR₀TTheory {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory ℒₒᵣ) [T.Delta1Definable] :
                            Equations
                            Instances For
                              @[simp]
                              theorem LO.Arith.Formalized.R₀'_subset_AddR₀ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory ℒₒᵣ} [T.Delta1Definable] :
                              ⌜𝐑₀'⌝ T.AddR₀TTheory
                              @[simp]
                              instance LO.Arith.Formalized.instR₀TheoryAddR₀TTheory {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory ℒₒᵣ} [T.Delta1Definable] :
                              R₀Theory T.AddR₀TTheory
                              Equations
                              • One or more equations did not get rendered due to their size.
                              def LO.FirstOrder.Theory.Provableₐ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory ℒₒᵣ) [T.Delta1Definable] (φ : V) :

                              Provability predicate for arithmetic stronger than $\mathbf{R_0}$.

                              Equations
                              Instances For
                                theorem LO.Arith.provableₐ_defined {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
                                𝚺₁-Predicate T.Provableₐ via T.provableₐ
                                @[simp]
                                theorem LO.Arith.eval_provableₐ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] (v : Fin 1V) :
                                V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val T.provableₐ) T.Provableₐ (v 0)
                                instance LO.Arith.provableₐ_definable {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
                                𝚺₁-Predicate T.Provableₐ
                                instance LO.Arith.provableₐ_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
                                { Γ := 𝚺, rank := 0 + 1 }-Predicate T.Provableₐ

                                instance for definability tactic