Documentation

Incompleteness.Arith.Theory

Formalized Σ1-Completeness #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
Equations
def LO.Arith.singleton {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] (φ : FirstOrder.SyntacticFormula L) :
{φ}.Delta1Definable
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.Formalized.Theory.CobhamR0'.Ω₁ :
FirstOrder.Theory.Delta1Definable {φ : FirstOrder.SyntacticFormula ℒₒᵣ | ∃ (n : ) (m : ), φ = (“(!!n + !!m) = !!(n + m)”)}
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.Formalized.Theory.CobhamR0'.Ω₂ :
FirstOrder.Theory.Delta1Definable {φ : FirstOrder.SyntacticFormula ℒₒᵣ | ∃ (n : ) (m : ), φ = (“(!!n * !!m) = !!(n * m)”)}
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev LO.FirstOrder.Theory.AddR₀TTheory {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory ℒₒᵣ) [T.Delta1Definable] :
Equations
Instances For
@[simp]
theorem LO.Arith.Formalized.R₀'_subset_AddR₀ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory ℒₒᵣ} [T.Delta1Definable] :
⌜𝐑₀'⌝ T.AddR₀TTheory
@[simp]
instance LO.Arith.Formalized.instR₀TheoryAddR₀TTheory {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory ℒₒᵣ} [T.Delta1Definable] :
R₀Theory T.AddR₀TTheory
Equations
  • One or more equations did not get rendered due to their size.
def LO.FirstOrder.Theory.Provableₐ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory ℒₒᵣ) [T.Delta1Definable] (φ : V) :

Provability predicate for arithmetic stronger than R0.

Equations
Instances For
theorem LO.Arith.provableₐ_defined {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
𝚺₁-Predicate T.Provableₐ via T.provableₐ
@[simp]
theorem LO.Arith.eval_provableₐ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] (v : Fin 1V) :
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val T.provableₐ) T.Provableₐ (v 0)
instance LO.Arith.provableₐ_definable {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
𝚺₁-Predicate T.Provableₐ
instance LO.Arith.provableₐ_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : FirstOrder.Theory ℒₒᵣ) [T.Delta1Definable] :
{ Γ := 𝚺, rank := 0 + 1 }-Predicate T.Provableₐ

instance for definability tactic