Documentation

Incompleteness.Arith.FormalizedArithmetic

Formalized Theory R0 #

@[reducible, inline]
Equations
@[simp]

TODO: move

@[simp]
theorem LO.Arith.Formalized.two_lt_four {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
2 < 1 + 1 + 1 + 1
@[simp]
Instances
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.Arith.Formalized.TProof.addExt {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (t₁ t₂ u₁ u₂ : ⌜ℒₒᵣ⌝.Term) :
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.add_ext! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (t₁ t₂ u₁ u₂ : ⌜ℒₒᵣ⌝.Term) :
noncomputable def LO.Arith.Formalized.TProof.mulExt {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (t₁ t₂ u₁ u₂ : ⌜ℒₒᵣ⌝.Term) :
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.mul_ext! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (t₁ t₂ u₁ u₂ : ⌜ℒₒᵣ⌝.Term) :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.Formalized.TProof.eqComplete {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : n = m) :
T (typedNumeral 0 n).equals (typedNumeral 0 m)
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.eq_complete! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : n = m) :
T ⊢! (typedNumeral 0 n).equals (typedNumeral 0 m)
theorem LO.Arith.Formalized.TProof.ne_complete! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : n m) :
T ⊢! (typedNumeral 0 n).notEquals (typedNumeral 0 m)
def LO.Arith.Formalized.TProof.ltComplete {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : n < m) :
T (typedNumeral 0 n).lessThan (typedNumeral 0 m)
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.lt_complete! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : n < m) :
T ⊢! (typedNumeral 0 n).lessThan (typedNumeral 0 m)
noncomputable def LO.Arith.Formalized.TProof.nltComplete {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : m n) :
T (typedNumeral 0 n).notLessThan (typedNumeral 0 m)
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.nlt_complete {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] {n m : V} (h : m n) :
T ⊢! (typedNumeral 0 n).notLessThan (typedNumeral 0 m)
noncomputable def LO.Arith.Formalized.TProof.ballIntro {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (φ : ⌜ℒₒᵣ⌝.Semiformula (0 + 1)) (n : V) (bs : (i : V) → i < nT φ^/[(typedNumeral 0 i).sing]) :
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.ball_intro! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (φ : ⌜ℒₒᵣ⌝.Semiformula (0 + 1)) (n : V) (bs : i < n, T ⊢! φ^/[(typedNumeral 0 i).sing]) :
noncomputable def LO.Arith.Formalized.TProof.bexIntro {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (φ : ⌜ℒₒᵣ⌝.Semiformula (0 + 1)) (n : V) {i : V} (hi : i < n) (b : T φ^/[(typedNumeral 0 i).sing]) :
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.Formalized.TProof.bex_intro! {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : ⌜ℒₒᵣ⌝.TTheory) [R₀Theory T] (φ : ⌜ℒₒᵣ⌝.Semiformula (0 + 1)) (n : V) {i : V} (hi : i < n) (b : T ⊢! φ^/[(typedNumeral 0 i).sing]) :