Documentation

Arithmetization.ISigmaOne.Metamath.CodedTheory

def LO.FirstOrder.Semiformula.curve {L : Language} {M : Type u_1} [Structure L M] (σ : Semisentence L 1) :
Set M
Equations
Instances For
    theorem LO.FirstOrder.Semiformula.curve_mem_left {L : Language} {M : Type u_1} [Structure L M] {σ π : Semisentence L 1} {x : M} (hx : x curve σ) :
    x curve (σ π)
    theorem LO.FirstOrder.Semiformula.curve_mem_right {L : Language} {M : Type u_1} [Structure L M] {σ π : Semisentence L 1} {x : M} (hx : x curve π) :
    x curve (σ π)
    class LO.FirstOrder.Theory.Delta1Definable {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (T : Theory L) extends L.lDef.TDef :
    Instances
      def LO.FirstOrder.Theory.tDef {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (T : Theory L) [d : T.Delta1Definable] :
      L.lDef.TDef
      Equations
      Instances For
        def LO.FirstOrder.Theory.codeIn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] (T : Theory L) [T.Delta1Definable] :
        (L.codeIn V).Theory
        Equations
        Instances For
          @[simp]
          theorem LO.FirstOrder.Theory.properOn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory L) [T.Delta1Definable] :
          theorem LO.Arith.Language.Theory.codeIn_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T : FirstOrder.Theory L} [T.Delta1Definable] {x : V} :
          theorem LO.Arith.mem_coded_theory_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory L} [T.Delta1Definable] {σ : FirstOrder.SyntacticFormula L} :
          instance LO.Arith.tDef_defined {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory L} [T.Delta1Definable] :
          (FirstOrder.Theory.codeIn V T).Defined T.tDef
          def LO.FirstOrder.Theory.tCodeIn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory L) [T.Delta1Definable] :
          (L.codeIn V).TTheory
          Equations
          Instances For
            def LO.FirstOrder.Theory.Delta1Definable.add {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
            (T + U).Delta1Definable
            Equations
            Instances For
              def LO.FirstOrder.Theory.Delta1Definable.ofEq {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {T U : Theory L} (dT : T.Delta1Definable) (h : T = U) :
              U.Delta1Definable
              Equations
              Instances For
                def LO.FirstOrder.Theory.Delta1Definable.add_subset_left {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
                codeIn V T codeIn V (T + U)
                Equations
                • =
                Instances For
                  def LO.FirstOrder.Theory.Delta1Definable.add_subset_right {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
                  codeIn V U codeIn V (T + U)
                  Equations
                  • =
                  Instances For