Documentation

Arithmetization.ISigmaOne.Metamath.CodedTheory

def LO.FirstOrder.Semiformula.curve {L : Language} {M : Type u_1} [Structure L M] (σ : Semisentence L 1) :
Set M
Equations
theorem LO.FirstOrder.Semiformula.curve_mem_left {L : Language} {M : Type u_1} [Structure L M] {σ π : Semisentence L 1} {x : M} (hx : x curve σ) :
x curve (σ π)
theorem LO.FirstOrder.Semiformula.curve_mem_right {L : Language} {M : Type u_1} [Structure L M] {σ π : Semisentence L 1} {x : M} (hx : x curve π) :
x curve (σ π)
def LO.FirstOrder.Theory.tDef {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (T : Theory L) [d : T.Delta1Definable] :
L.lDef.TDef
Equations
Instances For
def LO.FirstOrder.Theory.codeIn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] (T : Theory L) [T.Delta1Definable] :
(L.codeIn V).Theory
Equations
Instances For
@[simp]
theorem LO.FirstOrder.Theory.properOn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory L) [T.Delta1Definable] :
theorem LO.Arith.Language.Theory.codeIn_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T : FirstOrder.Theory L} [T.Delta1Definable] {x : V} :
theorem LO.Arith.mem_coded_theory_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory L} [T.Delta1Definable] {σ : FirstOrder.SyntacticFormula L} :
instance LO.Arith.tDef_defined {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {T : FirstOrder.Theory L} [T.Delta1Definable] :
(FirstOrder.Theory.codeIn V T).Defined T.tDef
def LO.FirstOrder.Theory.tCodeIn {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (T : Theory L) [T.Delta1Definable] :
(L.codeIn V).TTheory
Equations
def LO.FirstOrder.Theory.Delta1Definable.add {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
(T + U).Delta1Definable
Equations
def LO.FirstOrder.Theory.Delta1Definable.ofEq {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {T U : Theory L} (dT : T.Delta1Definable) (h : T = U) :
U.Delta1Definable
Equations
def LO.FirstOrder.Theory.Delta1Definable.add_subset_left {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
codeIn V T codeIn V (T + U)
Equations
  • =
def LO.FirstOrder.Theory.Delta1Definable.add_subset_right {L : Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] {V : Type u_1} [ORingStruc V] {T U : Theory L} (dT : T.Delta1Definable) (dU : U.Delta1Definable) :
codeIn V U codeIn V (T + U)
Equations
  • =