def
LO.FirstOrder.Semiformula.curve
{L : LO.FirstOrder.Language}
{M : Type u_1}
[LO.FirstOrder.Structure L M]
(σ : LO.FirstOrder.Semisentence L 1)
:
Set M
Equations
- LO.FirstOrder.Semiformula.curve σ = {x : M | M ⊧/![x] σ}
Instances For
theorem
LO.FirstOrder.Semiformula.curve_mem_left
{L : LO.FirstOrder.Language}
{M : Type u_1}
[LO.FirstOrder.Structure L M]
{σ π : LO.FirstOrder.Semisentence L 1}
{x : M}
(hx : x ∈ LO.FirstOrder.Semiformula.curve σ)
:
x ∈ LO.FirstOrder.Semiformula.curve (σ ⋎ π)
theorem
LO.FirstOrder.Semiformula.curve_mem_right
{L : LO.FirstOrder.Language}
{M : Type u_1}
[LO.FirstOrder.Structure L M]
{σ π : LO.FirstOrder.Semisentence L 1}
{x : M}
(hx : x ∈ LO.FirstOrder.Semiformula.curve π)
:
x ∈ LO.FirstOrder.Semiformula.curve (σ ⋎ π)
class
LO.FirstOrder.Theory.Delta1Definable
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
(T : LO.FirstOrder.Theory L)
extends L.lDef.TDef :
- mem_iff : ∀ {p : LO.FirstOrder.SyntacticFormula L}, p ∈ T ↔ ℕ ⊧/![⌜p⌝] (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val (LO.FirstOrder.Theory.Delta1Definable.toTDef T).ch)
Instances
def
LO.FirstOrder.Theory.tDef
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
(T : LO.FirstOrder.Theory L)
[d : T.Delta1Definable]
:
L.lDef.TDef
Equations
Instances For
def
LO.FirstOrder.Theory.codeIn
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
(V : Type u_1)
[LO.ORingStruc V]
(T : LO.FirstOrder.Theory L)
[T.Delta1Definable]
:
(L.codeIn V).Theory
Equations
- LO.FirstOrder.Theory.codeIn V T = { set := (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val T.tDef.ch).curve }
Instances For
@[simp]
theorem
LO.FirstOrder.Theory.properOn
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
(V : Type u_1)
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(T : LO.FirstOrder.Theory L)
[T.Delta1Definable]
:
theorem
LO.Arith.Language.Theory.codeIn_iff
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{V : Type u_1}
[LO.ORingStruc V]
{T : LO.FirstOrder.Theory L}
[T.Delta1Definable]
{x : V}
:
x ∈ LO.FirstOrder.Theory.codeIn V T ↔ V ⊧/![x] (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val T.tDef.ch)
theorem
LO.Arith.mem_coded_theory_iff
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{T : LO.FirstOrder.Theory L}
[T.Delta1Definable]
{σ : LO.FirstOrder.SyntacticFormula L}
:
instance
LO.Arith.tDef_defined
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{T : LO.FirstOrder.Theory L}
[T.Delta1Definable]
:
(LO.FirstOrder.Theory.codeIn V T).Defined T.tDef
Equations
- ⋯ = ⋯
def
LO.FirstOrder.Theory.tCodeIn
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
(V : Type u_1)
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(T : LO.FirstOrder.Theory L)
[T.Delta1Definable]
:
(L.codeIn V).TTheory
Equations
Instances For
def
LO.FirstOrder.Theory.Delta1Definable.add
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{T U : LO.FirstOrder.Theory L}
(dT : T.Delta1Definable)
(dU : U.Delta1Definable)
:
(T + U).Delta1Definable
Equations
- dT.add dU = { ch := LO.FirstOrder.Arith.HierarchySymbol.Semiformula.or T.tDef.ch U.tDef.ch, mem_iff := ⋯, isDelta1 := ⋯ }
Instances For
def
LO.FirstOrder.Theory.Delta1Definable.ofEq
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{T U : LO.FirstOrder.Theory L}
(dT : T.Delta1Definable)
(h : T = U)
:
U.Delta1Definable
Equations
- dT.ofEq h = { ch := (LO.FirstOrder.Theory.Delta1Definable.toTDef T).ch, mem_iff := ⋯, isDelta1 := ⋯ }
Instances For
def
LO.FirstOrder.Theory.Delta1Definable.add_subset_left
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{V : Type u_1}
[LO.ORingStruc V]
{T U : LO.FirstOrder.Theory L}
(dT : T.Delta1Definable)
(dU : U.Delta1Definable)
:
LO.FirstOrder.Theory.codeIn V T ⊆ LO.FirstOrder.Theory.codeIn V (T + U)
Equations
- ⋯ = ⋯
Instances For
def
LO.FirstOrder.Theory.Delta1Definable.add_subset_right
{L : LO.FirstOrder.Language}
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
[LO.Arith.DefinableLanguage L]
{V : Type u_1}
[LO.ORingStruc V]
{T U : LO.FirstOrder.Theory L}
(dT : T.Delta1Definable)
(dU : U.Delta1Definable)
:
LO.FirstOrder.Theory.codeIn V U ⊆ LO.FirstOrder.Theory.codeIn V (T + U)
Equations
- ⋯ = ⋯