structure
LO.Arith.Language.Theory
{V : Type u_1}
[ORingStruc V]
(L : Arith.Language V)
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
 :
Type u_1
- set : Set V
 
Instances For
instance
LO.Arith.instMembershipTheory
{V : Type u_1}
[ORingStruc V]
(L : Arith.Language V)
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
 :
Membership V L.Theory
Equations
- LO.Arith.instMembershipTheory L = { mem := fun (T : L.Theory) (x : V) => x ∈ T.set }
 
instance
LO.Arith.instHasSubsetTheory
{V : Type u_1}
[ORingStruc V]
(L : Arith.Language V)
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
 :
HasSubset L.Theory
Equations
- LO.Arith.instHasSubsetTheory L = { Subset := fun (T U : L.Theory) => T.set ⊆ U.set }
 
theorem
LO.Arith.Language.Theory.mem_def
{V : Type u_1}
[ORingStruc V]
(L : Arith.Language V)
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
{T : L.Theory}
{p : V}
 :
class
LO.Arith.Language.Theory.Defined
{V : Type u_1}
[ORingStruc V]
{L : Arith.Language V}
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
(T : L.Theory)
(pT : outParam pL.TDef)
 :
- defined : 𝚫₁-Predicate fun (x : V) => x ∈ T.set via pT.ch
 
Instances
instance
LO.Arith.Language.Theory.mem_definable
{V : Type u_1}
[ORingStruc V]
{L : Arith.Language V}
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
(T : L.Theory)
{pT : pL.TDef}
[T.Defined pT]
 :
𝚫₁-Predicate fun (x : V) => x ∈ T