def
LO.FirstOrder.Semiformula.replicate
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
(p : LO.FirstOrder.Semiformula L ξ n)
:
ℕ → LO.FirstOrder.Semiformula L ξ n
Instances For
theorem
LO.FirstOrder.Semiformula.replicate_zero
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
(p : LO.FirstOrder.Semiformula L ξ n)
:
p.replicate 0 = p
theorem
LO.FirstOrder.Semiformula.replicate_succ
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
(p : LO.FirstOrder.Semiformula L ξ n)
(k : ℕ)
:
Equations
- LO.FirstOrder.Semiformula.weight k = (List.replicate k ⊤).conj
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.QQConj.construction = { nil := fun (x : Fin 0 → V) => LO.Arith.qqVerum, cons := fun (x : Fin 0 → V) (p x ih : V) => LO.Arith.qqAnd p ih, nil_defined := ⋯, cons_defined := ⋯ }
Instances For
Equations
- LO.Arith.qqConj ps = LO.Arith.QQConj.construction.result ![] ps
Instances For
Equations
- LO.Arith.«term^⋀_» = Lean.ParserDescr.node `LO.Arith.«term^⋀_» 65 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^⋀ ") (Lean.ParserDescr.cat `term 66))
Instances For
@[simp]
theorem
LO.Arith.qqConj_nil
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
LO.Arith.qqConj 0 = LO.Arith.qqVerum
@[simp]
theorem
LO.Arith.qqConj_cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(p ps : V)
:
LO.Arith.qqConj (cons p ps) = LO.Arith.qqAnd p (LO.Arith.qqConj ps)
Equations
Instances For
theorem
LO.Arith.qqConj_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqConj via LO.FirstOrder.Arith.qqConjDef
@[simp]
instance
LO.Arith.qqConj_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqConj
Equations
- ⋯ = ⋯
instance
LO.Arith.qqConj_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : LO.SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqConj
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.Arith.qqConj_semiformula
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n ps : V}
:
L.IsSemiformula n (LO.Arith.qqConj ps) ↔ ∀ i < LO.Arith.len ps, L.IsSemiformula n (LO.Arith.nth ps i)
@[simp]
theorem
LO.Arith.len_le_conj
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(ps : V)
:
LO.Arith.len ps ≤ LO.Arith.qqConj ps
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.QQDisj.construction = { nil := fun (x : Fin 0 → V) => LO.Arith.qqFalsum, cons := fun (x : Fin 0 → V) (p x ih : V) => LO.Arith.qqOr p ih, nil_defined := ⋯, cons_defined := ⋯ }
Instances For
Equations
- LO.Arith.qqDisj ps = LO.Arith.QQDisj.construction.result ![] ps
Instances For
Equations
- LO.Arith.«term^⋁_» = Lean.ParserDescr.node `LO.Arith.«term^⋁_» 65 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^⋁ ") (Lean.ParserDescr.cat `term 66))
Instances For
@[simp]
theorem
LO.Arith.qqDisj_nil
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
LO.Arith.qqDisj 0 = LO.Arith.qqFalsum
@[simp]
theorem
LO.Arith.qqDisj_cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(p ps : V)
:
LO.Arith.qqDisj (cons p ps) = LO.Arith.qqOr p (LO.Arith.qqDisj ps)
Equations
Instances For
theorem
LO.Arith.qqDisj_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqDisj via LO.FirstOrder.Arith.qqDisjDef
@[simp]
instance
LO.Arith.qqDisj_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqDisj
Equations
- ⋯ = ⋯
instance
LO.Arith.qqDisj_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{m : ℕ}
(Γ : LO.SigmaPiDelta)
:
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqDisj
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.Arith.qqDisj_semiformula
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n ps : V}
:
L.IsSemiformula n (LO.Arith.qqDisj ps) ↔ ∀ i < LO.Arith.len ps, L.IsSemiformula n (LO.Arith.nth ps i)
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.Formalized.substItr w p k = LO.Arith.Formalized.SubstItr.construction.result ![w, p] k
Instances For
@[simp]
theorem
LO.Arith.Formalized.substItr_zero
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(w p : V)
:
LO.Arith.Formalized.substItr w p 0 = 0
@[simp]
theorem
LO.Arith.Formalized.substItr_succ
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(w p k : V)
:
LO.Arith.Formalized.substItr w p (k + 1) = cons (⌜ℒₒᵣ⌝.substs (cons (LO.Arith.Formalized.numeral k) w) p) (LO.Arith.Formalized.substItr w p k)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.Formalized.substItr_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₃ LO.Arith.Formalized.substItr via LO.FirstOrder.Arith.substItrDef
@[simp]
theorem
LO.Arith.Formalized.substItr_defined_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 4 → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val LO.FirstOrder.Arith.substItrDef) ↔ v 0 = LO.Arith.Formalized.substItr (v 1) (v 2) (v 3)
instance
LO.Arith.Formalized.substItr_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₃ LO.Arith.Formalized.substItr
Equations
- ⋯ = ⋯
instance
LO.Arith.Formalized.substItr_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : LO.SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₃ LO.Arith.Formalized.substItr
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.Arith.Formalized.len_substItr
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(w p k : V)
:
LO.Arith.len (LO.Arith.Formalized.substItr w p k) = k
@[simp]
theorem
LO.Arith.Formalized.substItr_nth
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(w p k : V)
{i : V}
(hi : i < k)
:
LO.Arith.nth (LO.Arith.Formalized.substItr w p k) i = ⌜ℒₒᵣ⌝.substs (cons (LO.Arith.Formalized.numeral (k - (i + 1))) w) p
theorem
LO.Arith.Formalized.neg_conj_substItr
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{m n w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
:
⌜ℒₒᵣ⌝.neg (LO.Arith.qqConj (LO.Arith.Formalized.substItr w p k)) = LO.Arith.qqDisj (LO.Arith.Formalized.substItr w (⌜ℒₒᵣ⌝.neg p) k)
theorem
LO.Arith.Formalized.neg_disj_substItr
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{m n w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
:
⌜ℒₒᵣ⌝.neg (LO.Arith.qqDisj (LO.Arith.Formalized.substItr w p k)) = LO.Arith.qqConj (LO.Arith.Formalized.substItr w (⌜ℒₒᵣ⌝.neg p) k)
theorem
LO.Arith.Formalized.substs_conj_substItr
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{v n m l w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
(hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v)
:
⌜ℒₒᵣ⌝.substs v (LO.Arith.qqConj (LO.Arith.Formalized.substItr w p k)) = LO.Arith.qqConj (LO.Arith.Formalized.substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
theorem
LO.Arith.Formalized.substs_disj_substItr
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{v n m l w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
(hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v)
:
⌜ℒₒᵣ⌝.substs v (LO.Arith.qqDisj (LO.Arith.Formalized.substItr w p k)) = LO.Arith.qqDisj (LO.Arith.Formalized.substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
Equations
- LO.Arith.qqVerums k = LO.Arith.qqConj (LO.Arith.repeatVec LO.Arith.qqVerum k)
Instances For
@[simp]
theorem
LO.Arith.le_qqVerums
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(k : V)
:
k ≤ LO.Arith.qqVerums k
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.qqVerums_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqVerums via LO.FirstOrder.Arith.qqVerumsDef
@[simp]
instance
LO.Arith.qqVerums_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₁-Function₁ LO.Arith.qqVerums
Equations
- ⋯ = ⋯
instance
LO.Arith.qqVerums_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : LO.SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqVerums
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.Arith.Language.IsSemiformula.qqVerums
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n : V}
(k : V)
:
L.IsSemiformula n (LO.Arith.qqVerums k)
@[simp]
theorem
LO.Arith.qqVerums_zero
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
LO.Arith.qqVerums 0 = LO.Arith.qqVerum
@[simp]
theorem
LO.Arith.qqVerums_succ
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(k : V)
:
LO.Arith.qqVerums (k + 1) = LO.Arith.qqAnd LO.Arith.qqVerum (LO.Arith.qqVerums k)