def
LO.FirstOrder.Semiformula.replicate
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(p : Semiformula L ξ n)
:
ℕ → Semiformula L ξ n
Instances For
theorem
LO.FirstOrder.Semiformula.replicate_zero
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(p : Semiformula L ξ n)
:
p.replicate 0 = p
theorem
LO.FirstOrder.Semiformula.replicate_succ
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(p : Semiformula L ξ n)
(k : ℕ)
:
def
LO.FirstOrder.Semiformula.weight
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(k : ℕ)
:
Semiformula L ξ n
Equations
- LO.FirstOrder.Semiformula.weight k = (List.replicate k ⊤).conj
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.QQConj.construction = { nil := fun (x : Fin 0 → V) => LO.Arith.qqVerum, cons := fun (x : Fin 0 → V) (p x ih : V) => LO.Arith.qqAnd p ih, nil_defined := ⋯, cons_defined := ⋯ }
Instances For
Equations
- LO.Arith.qqConj ps = LO.Arith.QQConj.construction.result ![] ps
Instances For
Equations
- LO.Arith.«term^⋀_» = Lean.ParserDescr.node `LO.Arith.«term^⋀_» 65 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^⋀ ") (Lean.ParserDescr.cat `term 66))
Instances For
@[simp]
Equations
Instances For
@[simp]
instance
LO.Arith.qqConj_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₁ qqConj
@[simp]
theorem
LO.Arith.qqConj_semiformula
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Arith.Language V}
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
{n ps : V}
:
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.QQDisj.construction = { nil := fun (x : Fin 0 → V) => LO.Arith.qqFalsum, cons := fun (x : Fin 0 → V) (p x ih : V) => LO.Arith.qqOr p ih, nil_defined := ⋯, cons_defined := ⋯ }
Instances For
Equations
- LO.Arith.qqDisj ps = LO.Arith.QQDisj.construction.result ![] ps
Instances For
Equations
- LO.Arith.«term^⋁_» = Lean.ParserDescr.node `LO.Arith.«term^⋁_» 65 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^⋁ ") (Lean.ParserDescr.cat `term 66))
Instances For
@[simp]
Equations
Instances For
@[simp]
instance
LO.Arith.qqDisj_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{m : ℕ}
(Γ : SigmaPiDelta)
:
{ Γ := Γ, rank := m + 1 }-Function₁ qqDisj
@[simp]
theorem
LO.Arith.qqDisj_semiformula
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Arith.Language V}
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
{n ps : V}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Arith.Formalized.substItr w p k = LO.Arith.Formalized.SubstItr.construction.result ![w, p] k
Instances For
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.Arith.Formalized.substItr_defined_iff
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 4 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.substItrDef) ↔ v 0 = substItr (v 1) (v 2) (v 3)
instance
LO.Arith.Formalized.substItr_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₃ substItr
@[simp]
theorem
LO.Arith.Formalized.substs_conj_substItr
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{v n m l w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
(hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v)
:
theorem
LO.Arith.Formalized.substs_disj_substItr
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{v n m l w p k : V}
(hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p)
(hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w)
(hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v)
:
Equations
Instances For
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
instance
LO.Arith.qqVerums_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
{ Γ := Γ, rank := m + 1 }-Function₁ qqVerums
@[simp]
theorem
LO.Arith.Language.IsSemiformula.qqVerums
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : Arith.Language V}
{pL : FirstOrder.Arith.LDef}
[L.Defined pL]
{n : V}
(k : V)
:
L.IsSemiformula n (qqVerums k)
@[simp]