Documentation

Arithmetization.ISigmaOne.Metamath.Formula.Iteration

Equations
  • p.replicate 0 = p
  • p.replicate k.succ = p p.replicate k
Instances For
    theorem LO.FirstOrder.Semiformula.replicate_succ {L : LO.FirstOrder.Language} {ξ : Type u_1} {n : } (p : LO.FirstOrder.Semiformula L ξ n) (k : ) :
    p.replicate (k + 1) = p p.replicate k
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • LO.Arith.QQConj.construction = { nil := fun (x : Fin 0V) => LO.Arith.qqVerum, cons := fun (x : Fin 0V) (p x ih : V) => LO.Arith.qqAnd p ih, nil_defined := , cons_defined := }
      Instances For
        def LO.Arith.qqConj {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
        V
        Equations
        Instances For
          @[simp]
          theorem LO.Arith.qqConj_nil {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
          LO.Arith.qqConj 0 = LO.Arith.qqVerum
          @[simp]
          Equations
          • =
          instance LO.Arith.qqConj_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : LO.SigmaPiDelta} {m : } :
          { Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqConj
          Equations
          • =
          @[simp]
          theorem LO.Arith.qqConj_semiformula {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.Arith.Language V} {pL : LO.FirstOrder.Arith.LDef} [L.Defined pL] {n : V} {ps : V} :
          L.IsSemiformula n (LO.Arith.qqConj ps) i < LO.Arith.len ps, L.IsSemiformula n (LO.Arith.nth ps i)
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • LO.Arith.QQDisj.construction = { nil := fun (x : Fin 0V) => LO.Arith.qqFalsum, cons := fun (x : Fin 0V) (p x ih : V) => LO.Arith.qqOr p ih, nil_defined := , cons_defined := }
            Instances For
              def LO.Arith.qqDisj {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
              V
              Equations
              Instances For
                @[simp]
                theorem LO.Arith.qqDisj_nil {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
                LO.Arith.qqDisj 0 = LO.Arith.qqFalsum
                @[simp]
                Equations
                • =
                instance LO.Arith.qqDisj_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : } (Γ : LO.SigmaPiDelta) :
                { Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqDisj
                Equations
                • =
                @[simp]
                theorem LO.Arith.qqDisj_semiformula {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.Arith.Language V} {pL : LO.FirstOrder.Arith.LDef} [L.Defined pL] {n : V} {ps : V} :
                L.IsSemiformula n (LO.Arith.qqDisj ps) i < LO.Arith.len ps, L.IsSemiformula n (LO.Arith.nth ps i)
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def LO.Arith.Formalized.substItr {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w : V) (p : V) (k : V) :
                    V
                    Equations
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        instance LO.Arith.Formalized.substItr_definable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
                        𝚺₁-Function₃ LO.Arith.Formalized.substItr
                        Equations
                        • =
                        instance LO.Arith.Formalized.substItr_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : LO.SigmaPiDelta} {m : } :
                        { Γ := Γ, rank := m + 1 }-Function₃ LO.Arith.Formalized.substItr
                        Equations
                        • =
                        @[simp]
                        @[simp]
                        theorem LO.Arith.Formalized.substItr_nth {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w : V) (p : V) (k : V) {i : V} (hi : i < k) :
                        theorem LO.Arith.Formalized.neg_conj_substItr {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} {n : V} {w : V} {p : V} {k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
                        theorem LO.Arith.Formalized.neg_disj_substItr {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : V} {n : V} {w : V} {p : V} {k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
                        theorem LO.Arith.Formalized.substs_conj_substItr {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {n : V} {m : V} {l : V} {w : V} {p : V} {k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
                        theorem LO.Arith.Formalized.substs_disj_substItr {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {n : V} {m : V} {l : V} {w : V} {p : V} {k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
                        def LO.Arith.qqVerums {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (k : V) :
                        V
                        Equations
                        Instances For
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            Equations
                            • =
                            instance LO.Arith.qqVerums_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : LO.SigmaPiDelta} {m : } :
                            { Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.qqVerums
                            Equations
                            • =
                            @[simp]
                            theorem LO.Arith.Language.IsSemiformula.qqVerums {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : LO.Arith.Language V} {pL : LO.FirstOrder.Arith.LDef} [L.Defined pL] {n : V} (k : V) :
                            L.IsSemiformula n (LO.Arith.qqVerums k)
                            @[simp]
                            theorem LO.Arith.qqVerums_zero {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
                            LO.Arith.qqVerums 0 = LO.Arith.qqVerum
                            @[simp]