Documentation

Arithmetization.ISigmaOne.Metamath.Formula.Iteration

def LO.FirstOrder.Semiformula.replicate {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) :
Semiformula L ξ n
Equations
  • p.replicate 0 = p
  • p.replicate k.succ = p p.replicate k
theorem LO.FirstOrder.Semiformula.replicate_zero {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) :
p.replicate 0 = p
theorem LO.FirstOrder.Semiformula.replicate_succ {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) (k : ) :
p.replicate (k + 1) = p p.replicate k
Equations
  • One or more equations did not get rendered due to their size.
Equations
@[simp]
theorem LO.Arith.qqConj_cons {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p ps : V) :
qqConj (cons p ps) = qqAnd p (qqConj ps)
instance LO.Arith.qqConj_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : SigmaPiDelta} {m : } :
{ Γ := Γ, rank := m + 1 }-Function₁ qqConj
@[simp]
theorem LO.Arith.qqConj_semiformula {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n ps : V} :
L.IsSemiformula n (qqConj ps) i < len ps, L.IsSemiformula n (nth ps i)
@[simp]
theorem LO.Arith.len_le_conj {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
len ps qqConj ps
Equations
  • One or more equations did not get rendered due to their size.
Equations
@[simp]
theorem LO.Arith.qqDisj_cons {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p ps : V) :
qqDisj (cons p ps) = qqOr p (qqDisj ps)
instance LO.Arith.qqDisj_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : } (Γ : SigmaPiDelta) :
{ Γ := Γ, rank := m + 1 }-Function₁ qqDisj
@[simp]
theorem LO.Arith.qqDisj_semiformula {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n ps : V} :
L.IsSemiformula n (qqDisj ps) i < len ps, L.IsSemiformula n (nth ps i)
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.Arith.Formalized.substItr_zero {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p : V) :
substItr w p 0 = 0
@[simp]
theorem LO.Arith.Formalized.substItr_succ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) :
substItr w p (k + 1) = cons (⌜ℒₒᵣ⌝.substs (cons (numeral k) w) p) (substItr w p k)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.Arith.Formalized.len_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) :
len (substItr w p k) = k
@[simp]
theorem LO.Arith.Formalized.substItr_nth {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) {i : V} (hi : i < k) :
nth (substItr w p k) i = ⌜ℒₒᵣ⌝.substs (cons (numeral (k - (i + 1))) w) p
theorem LO.Arith.Formalized.neg_conj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m n w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
theorem LO.Arith.Formalized.neg_disj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m n w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
theorem LO.Arith.Formalized.substs_conj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v n m l w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
⌜ℒₒᵣ⌝.substs v (qqConj (substItr w p k)) = qqConj (substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
theorem LO.Arith.Formalized.substs_disj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v n m l w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
⌜ℒₒᵣ⌝.substs v (qqDisj (substItr w p k)) = qqDisj (substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
@[simp]
theorem LO.Arith.le_qqVerums {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (k : V) :
Equations
  • One or more equations did not get rendered due to their size.
instance LO.Arith.qqVerums_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : SigmaPiDelta} {m : } :
{ Γ := Γ, rank := m + 1 }-Function₁ qqVerums
@[simp]
theorem LO.Arith.Language.IsSemiformula.qqVerums {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n : V} (k : V) :
L.IsSemiformula n (qqVerums k)
@[simp]