Documentation

Arithmetization.ISigmaOne.Metamath.Formula.Iteration

def LO.FirstOrder.Semiformula.replicate {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) :
Semiformula L ξ n
Equations
  • p.replicate 0 = p
  • p.replicate k.succ = p p.replicate k
Instances For
    theorem LO.FirstOrder.Semiformula.replicate_zero {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) :
    p.replicate 0 = p
    theorem LO.FirstOrder.Semiformula.replicate_succ {L : Language} {ξ : Type u_1} {n : } (p : Semiformula L ξ n) (k : ) :
    p.replicate (k + 1) = p p.replicate k
    def LO.FirstOrder.Semiformula.weight {L : Language} {ξ : Type u_1} {n : } (k : ) :
    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        Instances For
          def LO.Arith.qqConj {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
          V
          Equations
          Instances For
            @[simp]
            theorem LO.Arith.qqConj_cons {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p ps : V) :
            qqConj (cons p ps) = qqAnd p (qqConj ps)
            instance LO.Arith.qqConj_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : SigmaPiDelta} {m : } :
            { Γ := Γ, rank := m + 1 }-Function₁ qqConj
            @[simp]
            theorem LO.Arith.qqConj_semiformula {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n ps : V} :
            L.IsSemiformula n (qqConj ps) i < len ps, L.IsSemiformula n (nth ps i)
            @[simp]
            theorem LO.Arith.len_le_conj {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
            len ps qqConj ps
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              Instances For
                def LO.Arith.qqDisj {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (ps : V) :
                V
                Equations
                Instances For
                  @[simp]
                  theorem LO.Arith.qqDisj_cons {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (p ps : V) :
                  qqDisj (cons p ps) = qqOr p (qqDisj ps)
                  instance LO.Arith.qqDisj_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : } (Γ : SigmaPiDelta) :
                  { Γ := Γ, rank := m + 1 }-Function₁ qqDisj
                  @[simp]
                  theorem LO.Arith.qqDisj_semiformula {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n ps : V} :
                  L.IsSemiformula n (qqDisj ps) i < len ps, L.IsSemiformula n (nth ps i)
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem LO.Arith.Formalized.substItr_zero {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p : V) :
                      substItr w p 0 = 0
                      @[simp]
                      theorem LO.Arith.Formalized.substItr_succ {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) :
                      substItr w p (k + 1) = cons (⌜ℒₒᵣ⌝.substs (cons (numeral k) w) p) (substItr w p k)
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem LO.Arith.Formalized.len_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) :
                        len (substItr w p k) = k
                        @[simp]
                        theorem LO.Arith.Formalized.substItr_nth {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (w p k : V) {i : V} (hi : i < k) :
                        nth (substItr w p k) i = ⌜ℒₒᵣ⌝.substs (cons (numeral (k - (i + 1))) w) p
                        theorem LO.Arith.Formalized.neg_conj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m n w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
                        theorem LO.Arith.Formalized.neg_disj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m n w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) :
                        theorem LO.Arith.Formalized.substs_conj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v n m l w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
                        ⌜ℒₒᵣ⌝.substs v (qqConj (substItr w p k)) = qqConj (substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
                        theorem LO.Arith.Formalized.substs_disj_substItr {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v n m l w p k : V} (hp : ⌜ℒₒᵣ⌝.IsSemiformula (n + 1) p) (hw : ⌜ℒₒᵣ⌝.IsSemitermVec n m w) (hv : ⌜ℒₒᵣ⌝.IsSemitermVec m l v) :
                        ⌜ℒₒᵣ⌝.substs v (qqDisj (substItr w p k)) = qqDisj (substItr (⌜ℒₒᵣ⌝.termSubstVec n v w) p k)
                        @[simp]
                        theorem LO.Arith.le_qqVerums {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (k : V) :
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          instance LO.Arith.qqVerums_definable' {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {Γ : SigmaPiDelta} {m : } :
                          { Γ := Γ, rank := m + 1 }-Function₁ qqVerums
                          @[simp]
                          theorem LO.Arith.Language.IsSemiformula.qqVerums {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] {n : V} (k : V) :
                          L.IsSemiformula n (qqVerums k)
                          @[simp]