Documentation

Foundation.FirstOrder.Arith.PeanoMinus

Equations
  • LO.Arith.instLE_foundation = { le := fun (x y : M) => x = y x < y }
Instances For
    theorem LO.Arith.le_def {M : Type u_1} [LO.ORingStruc M] {x y : M} :
    x y x = y x < y
    theorem LO.Arith.add_zero {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    x + 0 = x
    theorem LO.Arith.add_assoc {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x + y + z = x + (y + z)
    theorem LO.Arith.add_comm {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y : M) :
    x + y = y + x
    theorem LO.Arith.add_eq_of_lt {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y : M) :
    x < y∃ (z : M), x + z = y
    @[simp]
    theorem LO.Arith.zero_le {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    0 x
    theorem LO.Arith.one_le_of_zero_lt {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    0 < x1 x
    theorem LO.Arith.add_lt_add {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x < yx + z < y + z
    theorem LO.Arith.mul_zero {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    x * 0 = 0
    theorem LO.Arith.mul_one {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    x * 1 = x
    theorem LO.Arith.mul_assoc {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x * y * z = x * (y * z)
    theorem LO.Arith.mul_comm {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y : M) :
    x * y = y * x
    theorem LO.Arith.mul_lt_mul {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x < y0 < zx * z < y * z
    theorem LO.Arith.distr {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x * (y + z) = x * y + x * z
    theorem LO.Arith.lt_irrefl {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
    ¬x < x
    theorem LO.Arith.lt_trans {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y z : M) :
    x < yy < zx < z
    theorem LO.Arith.lt_tri {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x y : M) :
    x < y x = y y < x
    Equations
    Instances For
      Equations
      Instances For
        Equations
        • LO.Arith.instLinearOrder_foundation = LinearOrder.mk (fun (x x_1 : M) => Classical.dec ((fun (x1 x2 : M) => x1 x2) x x_1)) decidableEqOfDecidableLE decidableLTOfDecidableLE
        Instances For
          theorem LO.Arith.zero_mul {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
          0 * x = 0
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            Instances For
              theorem LO.Arith.not_neg {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] (x : M) :
              ¬x < 0
              theorem LO.Arith.eq_succ_of_pos {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] {x : M} (h : 0 < x) :
              ∃ (y : M), x = y + 1
              theorem LO.Arith.le_iff_lt_succ {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] {x y : M} :
              x y x < y + 1
              theorem LO.Arith.eq_nat_of_lt_nat {M : Type u_1} [LO.ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] {n : } {x : M} :
              x < n∃ (m : ), x = m