Documentation

Foundation.IntFO.Basic.Rew

def LO.FirstOrder.Semiformulaᵢ.rew {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) :
Semiformulaᵢ L ξ₁ n₁ →ˡᶜ Semiformulaᵢ L ξ₂ n₂
Equations
Instances For
    instance LO.FirstOrder.Semiformulaᵢ.instRewriting {L : Language} {ξ : Type u_2} {ζ : Type u_3} :
    Equations
    theorem LO.FirstOrder.Semiformulaᵢ.rew_rel {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) {k : } (r : L.Rel k) (v : Fin kSemiterm L ξ₁ n₁) :
    (Rewriting.app ω) (rel r v) = rel r fun (i : Fin k) => ω (v i)
    theorem LO.FirstOrder.Semiformulaᵢ.rew_rel' {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) {k : } {r : L.Rel k} {v : Fin kSemiterm L ξ₁ n₁} :
    (Rewriting.app ω) (rel r v) = rel r (ω v)
    instance LO.FirstOrder.Semiformulaᵢ.instTransitiveRewriting {L : Language} {ξ₁ : Type u_2} {ξ₂ : Type u_3} {ξ₃ : Type u_4} :
    TransitiveRewriting L ξ₁ (Semiformulaᵢ L ξ₁) ξ₂ (Semiformulaᵢ L ξ₂) ξ₃ (Semiformulaᵢ L ξ₃)
    @[simp]
    theorem LO.FirstOrder.Semiformulaᵢ.complexity_rew {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) (φ : Semiformulaᵢ L ξ₁ n₁) :
    ((Rewriting.app ω) φ).complexity = φ.complexity
    @[simp]
    theorem LO.FirstOrder.Semiformulaᵢ.IsNegative.rew {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } {ω : Rew L ξ₁ n₁ ξ₂ n₂} {φ : Semiformulaᵢ L ξ₁ n₁} :
    ((Rewriting.app ω) φ).IsNegative φ.IsNegative