Documentation

Foundation.Logic.Kripke.Tree

theorem List.Chain'.nodup_of_trans_irreflex {α : Type u_1} {l : List α} {R : ααProp} (R_trans : Transitive R) (R_irrefl : Irreflexive R) (h_chain : List.Chain' R l) :
l.Nodup
instance List.finiteNodupList {α : Type u_1} [DecidableEq α] [Finite α] :
Finite { l : List α // l.Nodup }
Equations
  • =
theorem List.chains_finite {α : Type u_1} {R : ααProp} [DecidableEq α] [Finite α] (R_trans : Transitive R) (R_irrefl : Irreflexive R) :
Finite { l : List α // List.Chain' R l }
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem LO.Kripke.Frame.TreeUnravelling.not_nil {F : LO.Kripke.Frame} {r : F.World} {c : (F.TreeUnravelling r).World} :
    c []
    theorem LO.Kripke.Frame.TreeUnravelling.rel_length {F : LO.Kripke.Frame} {r : F.World} {x : (F.TreeUnravelling r).World} {y : (F.TreeUnravelling r).World} (h : x y) :
    (x).length < (y).length
    theorem LO.Kripke.Frame.TreeUnravelling.irreflexive {F : LO.Kripke.Frame} {r : F.World} :
    Irreflexive (F.TreeUnravelling r).Rel
    theorem LO.Kripke.Frame.TreeUnravelling.assymetric {F : LO.Kripke.Frame} {r : F.World} :
    Assymetric (F.TreeUnravelling r).Rel
    def LO.Kripke.Frame.TreeUnravelling.PMorphism (F : LO.Kripke.Frame) (r : F.World) :
    F.TreeUnravelling r →ₚ F
    Equations
    Instances For
      @[reducible, inline]
      Equations
      • F.TransitiveTreeUnravelling r = F.TreeUnravelling r^+
      Instances For
        @[simp]
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.not_nil {F : LO.Kripke.Frame} {r : F.World} {c : (F.TransitiveTreeUnravelling r).World} :
        c []
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.rel_length {F : LO.Kripke.Frame} {r : F.World} {x : (F.TransitiveTreeUnravelling r).World} {y : (F.TransitiveTreeUnravelling r).World} (Rxy : x y) :
        (x).length < (y).length
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.rel_transitive {F : LO.Kripke.Frame} {r : F.World} :
        Transitive (F.TransitiveTreeUnravelling r).Rel
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.rel_asymmetric {F : LO.Kripke.Frame} {r : F.World} :
        Assymetric (F.TransitiveTreeUnravelling r).Rel
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.rel_def {F : LO.Kripke.Frame} {r : F.World} {x : (F.TransitiveTreeUnravelling r).World} {y : (F.TransitiveTreeUnravelling r).World} :
        x y (x).length < (y).length x <+: y
        theorem LO.Kripke.Frame.TransitiveTreeUnravelling.rooted {F : LO.Kripke.Frame} {r : F.World} :
        (F.TransitiveTreeUnravelling r).isRooted [r],
        def LO.Kripke.Frame.TransitiveTreeUnravelling.pMorphism (F : LO.Kripke.Frame) (F_trans : Transitive F.Rel) (r : F.World) :
        F.TransitiveTreeUnravelling r →ₚ F
        Equations
        Instances For
          def LO.Kripke.Model.TreeUnravelling {α : Type u_1} (M : LO.Kripke.Model α) (r : M.World) :
          Equations
          • M.TreeUnravelling r = { Frame := M.Frame.TreeUnravelling r, Valuation := fun (c : (M.Frame.TreeUnravelling r).World) (a : α) => M.Valuation ((c).getLast ) a }
          Instances For
            Equations
            • M.TransitiveTreeUnravelling r = { Frame := M.Frame.TransitiveTreeUnravelling r, Valuation := fun (c : (M.Frame.TransitiveTreeUnravelling r).World) (a : α) => M.Valuation ((c).getLast ) a }
            Instances For
              def LO.Kripke.Model.TransitiveTreeUnravelling.pMorphism {α : Type u_1} (M : LO.Kripke.Model α) (M_trans : Transitive M.Frame.Rel) (r : M.World) :
              M.TransitiveTreeUnravelling r →ₚ M
              Equations
              Instances For
                • World : Type u_1
                • Rel : Rel self.World self.World
                • World_nonempty : Nonempty self.World
                • World_finite : Finite self.World
                • root : self.World
                • root_rooted : self.isRooted self.root
                • default : self.World
                • rel_assymetric : Assymetric self.Rel
                • rel_transitive : Transitive self.Rel
                Instances For
                  @[reducible, inline]
                  abbrev LO.Kripke.FiniteTransitiveTree.Dep (α : Type u_1) :
                  Type (u_2 + 1)
                  Equations
                  Instances For
                    @[reducible, inline]
                    Equations
                    Instances For
                      @[reducible, inline]
                      Equations
                      • M.FiniteTransitiveTreeUnravelling r = (Mr).TransitiveTreeUnravelling r,
                      Instances For
                        structure LO.Kripke.FiniteTransitiveTreeModel (α : Type u_1) :
                        Type (max u_1 (u_2 + 1))
                        Instances For
                          @[reducible, inline]
                          Equations
                          • M.World = M.Tree.World
                          Instances For
                            @[reducible, inline]
                            Equations
                            • M.root = M.Tree.root
                            Instances For
                              @[reducible, inline]
                              Equations
                              • M.toFrame = M.Tree.toFrame
                              Instances For
                                @[reducible, inline]
                                Equations
                                • M.toModel = { Frame := M.toFrame, Valuation := M.Valuation }
                                Instances For
                                  Equations
                                  • LO.Kripke.FiniteTransitiveTreeModel.instCoeModel = { coe := LO.Kripke.FiniteTransitiveTreeModel.toModel }
                                  Equations
                                  • LO.Kripke.FiniteTransitiveTreeModel.instCoeSortType = { coe := LO.Kripke.FiniteTransitiveTreeModel.World }
                                  @[reducible, inline]
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For