Equations
- LO.Kripke.instCoeSortFrameType = { coe := LO.Kripke.Frame.World }
instance
LO.Kripke.instCoeFunFrameForallWorldForallProp :
CoeFun LO.Kripke.Frame fun (F : LO.Kripke.Frame) => F.World → F.World → Prop
Equations
@[reducible, inline]
Instances For
Equations
- LO.Kripke.«term_≺_» = Lean.ParserDescr.trailingNode `LO.Kripke.term_≺_ 45 46 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ≺ ") (Lean.ParserDescr.cat `term 46))
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Kripke.«term﹫» = Lean.ParserDescr.node `LO.Kripke.term﹫ 1024 (Lean.ParserDescr.symbol "﹫")
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Kripke.«term_#_» = Lean.ParserDescr.trailingNode `LO.Kripke.term_#_ 1022 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "#") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.Kripke.instCoeFiniteFrameFrame = { coe := fun (F : LO.Kripke.FiniteFrame) => F.toFrame }
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Kripke.«term_#__1» = Lean.ParserDescr.trailingNode `LO.Kripke.term_#__1 1024 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "#") (Lean.ParserDescr.cat `term 1024))
Instances For
@[reducible, inline]
Instances For
@[reducible, inline]
Instances For
@[reducible, inline]
Instances For
Equations
- LO.Kripke.«term_#__2» = Lean.ParserDescr.trailingNode `LO.Kripke.term_#__2 1024 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "#") (Lean.ParserDescr.cat `term 1024))
Instances For
@[reducible, inline]
Equations
- 𝔽.toFrameClass = LO.Kripke.FiniteFrame.toFrame '' 𝔽
Instances For
@[reducible, inline]
Equations
- 𝔽ꟳ = {FF : LO.Kripke.FiniteFrame | FF.toFrame ∈ 𝔽}
Instances For
Equations
- LO.Kripke.«term_ꟳ» = Lean.ParserDescr.trailingNode `LO.Kripke.term_ꟳ 1024 1024 (Lean.ParserDescr.symbol "ꟳ")
Instances For
theorem
LO.Kripke.FrameClass.iff_mem_restrictFinite
{𝔽 : LO.Kripke.FrameClass}
{F : LO.Kripke.Frame}
(h : F ∈ 𝔽)
[Finite F.World]
:
@[reducible, inline]
FrameClass for 𝐊𝐓
Equations
- LO.Kripke.ReflexiveFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊𝐃
Equations
- LO.Kripke.SerialFrameClass = {F : LO.Kripke.Frame | Serial F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊𝟒
Equations
- LO.Kripke.TransitiveFrameClass = {F : LO.Kripke.Frame | Transitive F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊𝐓𝟓
(𝐒𝟓
)
Equations
- LO.Kripke.ReflexiveEuclideanFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Euclidean F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊𝐓𝐁
Equations
- LO.Kripke.ReflexiveSymmetricFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Symmetric F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐒𝟓
Equations
- LO.Kripke.UniversalFrameClass = {F : LO.Kripke.Frame | Universal F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊.𝟑
Equations
- LO.Kripke.ConnectedFrameClass = {F : LO.Kripke.Frame | Connected F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐈𝐧𝐭
and 𝐒𝟒
Equations
- LO.Kripke.ReflexiveTransitiveFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐊𝐂
and 𝐒𝟒.𝟐
Equations
- LO.Kripke.ReflexiveTransitiveConfluentFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Confluent F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐋𝐂
and 𝐒𝟒.𝟑
Equations
- LO.Kripke.ReflexiveTransitiveConnectedFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Connected F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐂𝐥
and 𝐊𝐓𝟒𝐁
(𝐒𝟓
)
Equations
- LO.Kripke.ReflexiveTransitiveSymmetricFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Symmetric F.Rel}
Instances For
Alias of LO.Kripke.ReflexiveTransitiveSymmetricFrameClass
.
FrameClass for 𝐂𝐥
and 𝐊𝐓𝟒𝐁
(𝐒𝟓
)
Instances For
@[reducible, inline]
FrameClass for 𝐆𝐋
Equations
- LO.Kripke.TransitiveConverseWellFoundedFrameClass = {F : LO.Kripke.Frame | Transitive F.Rel ∧ ConverseWellFounded F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐆𝐋
(Finite version)
Equations
- LO.Kripke.TransitiveIrreflexiveFrameClass = {F : LO.Kripke.Frame | Transitive F.Rel ∧ Irreflexive F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐆𝐫𝐳
Equations
- LO.Kripke.ReflexiveTransitiveWeaklyConverseWellFoundedFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ WeaklyConverseWellFounded F.Rel}
Instances For
@[reducible, inline]
FrameClass for 𝐆𝐫𝐳
(Finite version)
Equations
- LO.Kripke.ReflexiveTransitiveAntisymmetricFrameClass = {F : LO.Kripke.Frame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Antisymmetric F.Rel}
Instances For
class
LO.Kripke.FrameClass.Characteraizable
(𝔽₁ : LO.Kripke.FrameClass)
(𝔽₂ : outParam LO.Kripke.FrameClass)
:
𝔽₁
is characterized by 𝔽₂
- characterize : ∀ {F : LO.Kripke.Frame}, F ∈ 𝔽₂ → F ∈ 𝔽₁
- nonempty : Set.Nonempty 𝔽₂
Instances
theorem
LO.Kripke.FrameClass.Characteraizable.characterize
{𝔽₁ : LO.Kripke.FrameClass}
{𝔽₂ : outParam LO.Kripke.FrameClass}
[self : 𝔽₁.Characteraizable 𝔽₂]
{F : LO.Kripke.Frame}
:
theorem
LO.Kripke.FrameClass.Characteraizable.nonempty
(𝔽₁ : LO.Kripke.FrameClass)
{𝔽₂ : outParam LO.Kripke.FrameClass}
[self : 𝔽₁.Characteraizable 𝔽₂]
:
Set.Nonempty 𝔽₂
class
LO.Kripke.FrameClass.DefinedBy
(𝔽₁ : LO.Kripke.FrameClass)
(𝔽₂ : outParam LO.Kripke.FrameClass)
:
𝔽₁
is defined by 𝔽₂
- define : ∀ {F : LO.Kripke.Frame}, F ∈ 𝔽₁ ↔ F ∈ 𝔽₂
- nonempty : Set.Nonempty 𝔽₂
Instances
theorem
LO.Kripke.FrameClass.DefinedBy.define
{𝔽₁ : LO.Kripke.FrameClass}
{𝔽₂ : outParam LO.Kripke.FrameClass}
[self : 𝔽₁.DefinedBy 𝔽₂]
{F : LO.Kripke.Frame}
:
theorem
LO.Kripke.FrameClass.DefinedBy.nonempty
(𝔽₁ : LO.Kripke.FrameClass)
{𝔽₂ : outParam LO.Kripke.FrameClass}
[self : 𝔽₁.DefinedBy 𝔽₂]
:
Set.Nonempty 𝔽₂
instance
LO.Kripke.instCharacteraizableOfDefinedBy
{𝔽₁ : LO.Kripke.FrameClass}
{𝔽₂ : LO.Kripke.FrameClass}
[defines : 𝔽₁.DefinedBy 𝔽₂]
:
𝔽₁.Characteraizable 𝔽₂
Equations
- LO.Kripke.instCharacteraizableOfDefinedBy = { characterize := ⋯, nonempty := ⋯ }
class
LO.Kripke.FiniteFrameClass.Characteraizable
(𝔽₁ : LO.Kripke.FiniteFrameClass)
(𝔽₂ : outParam LO.Kripke.FiniteFrameClass)
:
- characterize : ∀ {F : LO.Kripke.FiniteFrame}, F ∈ 𝔽₂ → F ∈ 𝔽₁
- nonempty : Set.Nonempty 𝔽₂
Instances
theorem
LO.Kripke.FiniteFrameClass.Characteraizable.characterize
{𝔽₁ : LO.Kripke.FiniteFrameClass}
{𝔽₂ : outParam LO.Kripke.FiniteFrameClass}
[self : 𝔽₁.Characteraizable 𝔽₂]
{F : LO.Kripke.FiniteFrame}
:
theorem
LO.Kripke.FiniteFrameClass.Characteraizable.nonempty
(𝔽₁ : LO.Kripke.FiniteFrameClass)
{𝔽₂ : outParam LO.Kripke.FiniteFrameClass}
[self : 𝔽₁.Characteraizable 𝔽₂]
:
Set.Nonempty 𝔽₂
class
LO.Kripke.FiniteFrameClass.DefinedBy
(𝔽₁ : LO.Kripke.FiniteFrameClass)
(𝔽₂ : outParam LO.Kripke.FiniteFrameClass)
:
- define : ∀ {F : LO.Kripke.FiniteFrame}, F ∈ 𝔽₁ ↔ F ∈ 𝔽₂
- nonempty : Set.Nonempty 𝔽₂
Instances
theorem
LO.Kripke.FiniteFrameClass.DefinedBy.define
{𝔽₁ : LO.Kripke.FiniteFrameClass}
{𝔽₂ : outParam LO.Kripke.FiniteFrameClass}
[self : 𝔽₁.DefinedBy 𝔽₂]
{F : LO.Kripke.FiniteFrame}
:
theorem
LO.Kripke.FiniteFrameClass.DefinedBy.nonempty
(𝔽₁ : LO.Kripke.FiniteFrameClass)
{𝔽₂ : outParam LO.Kripke.FiniteFrameClass}
[self : 𝔽₁.DefinedBy 𝔽₂]
:
Set.Nonempty 𝔽₂
instance
LO.Kripke.instCharacteraizableOfDefinedBy_1
{𝔽₁ : LO.Kripke.FiniteFrameClass}
{𝔽₂ : LO.Kripke.FiniteFrameClass}
[defines : 𝔽₁.DefinedBy 𝔽₂]
:
𝔽₁.Characteraizable 𝔽₂
Equations
- LO.Kripke.instCharacteraizableOfDefinedBy_1 = { characterize := ⋯, nonempty := ⋯ }
@[reducible, inline]
abbrev
LO.Kripke.Valuation.atomic_hereditary
{F : LO.Kripke.Frame}
{α : Type u_2}
(V : LO.Kripke.Valuation F α)
:
Instances For
- Frame : LO.Kripke.Frame
- Valuation : LO.Kripke.Valuation self.Frame α
Instances For
Equations
- LO.Kripke.instCoeSortModelType = { coe := LO.Kripke.Model.World }
@[reducible, inline]
Equations
- LO.Kripke.ClassicalFrame = LO.Kripke.Frame.mk Unit fun (x x : Unit) => True
Instances For
@[reducible, inline]
Equations
- LO.Kripke.ClassicalModel V = { Frame := LO.Kripke.ClassicalFrame, Valuation := fun (x : LO.Kripke.ClassicalFrame.World) (a : α) => V a }
Instances For
@[reducible, inline]
Frame with single world and identiy relation
Equations
- LO.Kripke.terminalFrame = LO.Kripke.FiniteFrame.mk (LO.Kripke.Frame.mk Unit fun (x x : Unit) => True)
Instances For
@[simp]
theorem
LO.Kripke.terminalFrame.iff_rel'
{x : LO.Kripke.terminalFrame.World}
{y : LO.Kripke.terminalFrame.World}
:
@[simp]
theorem
LO.Kripke.terminalFrame.iff_relItr'
{n : ℕ}
{x : LO.Kripke.terminalFrame.World}
{y : LO.Kripke.terminalFrame.World}
:
@[reducible, inline]
Equations
- LO.Kripke.PointFrame = LO.Kripke.FiniteFrame.mk (LO.Kripke.Frame.mk Unit fun (x x : Unit) => False)
Instances For
@[simp]
theorem
LO.Kripke.PointFrame.iff_rel'
{x : LO.Kripke.PointFrame.World}
{y : LO.Kripke.PointFrame.World}
: