Documentation
Foundation
.
Modal
.
Hilbert
.
GL_Independency
Search
return to top
source
Imports
Init
Foundation.Modal.Hilbert.Maximal.Unprovability
Foundation.Modal.Kripke.GL.MDP
Imported by
Foundation
LO
.
Modal
.
independency
LO
.
Modal
.
higherIndependency
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_notbox
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_independency
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_not_independency_of_consistency
LO
.
Modal
.
Hilbert
.
GL
.
undecidable_independency_of_consistency
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_higherIndependency_of_consistency
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_not_higherIndependency_of_consistency
LO
.
Modal
.
Hilbert
.
GL
.
undecidable_higherIndependency_of_consistency
source
def
LO
.
Modal
.
independency
{α :
Type
u_1}
(φ :
Formula
α
)
:
Formula
α
Equations
LO.Modal.independency
φ
=
∼
□
φ
⋏
∼
□
(
∼
φ
)
source
def
LO
.
Modal
.
higherIndependency
{α :
Type
u_1}
(φ :
Formula
α
)
:
ℕ
→
Formula
α
Equations
LO.Modal.higherIndependency
φ
0
=
φ
LO.Modal.higherIndependency
φ
n
.succ
=
LO.Modal.independency
(
LO.Modal.higherIndependency
φ
n
)
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_notbox
{φ :
Formula
ℕ
}
:
Hilbert.GL
ℕ
⊬
∼
□
φ
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_independency
{φ :
Formula
ℕ
}
:
Hilbert.GL
ℕ
⊬
independency
φ
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_not_independency_of_consistency
:
Hilbert.GL
ℕ
⊬
∼
independency
(
∼
□
⊥
)
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
undecidable_independency_of_consistency
:
System.Undecidable
(
Hilbert.GL
ℕ
)
(
independency
(
∼
□
⊥
)
)
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_higherIndependency_of_consistency
{n :
ℕ
}
:
Hilbert.GL
ℕ
⊬
higherIndependency
(
∼
□
⊥
)
n
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
unprovable_not_higherIndependency_of_consistency
{n :
ℕ
}
:
Hilbert.GL
ℕ
⊬
∼
higherIndependency
(
∼
□
⊥
)
n
source
theorem
LO
.
Modal
.
Hilbert
.
GL
.
undecidable_higherIndependency_of_consistency
{n :
ℕ
}
:
System.Undecidable
(
Hilbert.GL
ℕ
)
(
higherIndependency
(
∼
□
⊥
)
n
)