Equations
- LO.Modal.Kripke.complexityLimitedFrame F r φ = LO.Modal.Kripke.Frame.mk ↑{x : F.World | ∃ n ≤ φ.complexity, r ≺^[n] x} fun (x y : ↑{x : F.World | ∃ n ≤ φ.complexity, r ≺^[n] x}) => ↑x ≺ ↑y
Instances For
theorem
LO.Modal.Kripke.iff_satisfy_complexityLimitedModel_aux
{M : Model}
{r x : M.World}
{φ ψ : Formula ℕ}
(hq : ψ ∈ φ.subformulae)
(hx : ∃ n ≤ φ.complexity - ψ.complexity, r ≺^[n] x)
:
x ⊧ ψ ↔ Formula.Kripke.Satisfies (complexityLimitedModel M r φ) ⟨x, ⋯⟩ ψ
theorem
LO.Modal.Kripke.iff_satisfy_complexityLimitedModel
{M : Model}
{r : M.World}
{φ : Formula ℕ}
:
r ⊧ φ ↔ Formula.Kripke.Satisfies (complexityLimitedModel M r φ) ⟨r, ⋯⟩ φ
theorem
LO.Modal.Kripke.complexityLimitedModel_subformula_closedAux
{M : Model}
{r : M.World}
{φ ψ₁ ψ₂ : Formula ℕ}
(hq₁ : φ ∈ ψ₁.subformulae)
(hq₂ : φ ∈ ψ₂.subformulae)
:
Formula.Kripke.Satisfies (complexityLimitedModel M r ψ₁) ⟨r, ⋯⟩ φ →
Formula.Kripke.Satisfies (complexityLimitedModel M r ψ₂) ⟨r, ⋯⟩ φ
theorem
LO.Modal.Kripke.complexityLimitedModel_subformula_closed
{M : Model}
{r : M.World}
{φ ψ : Formula ℕ}
(hq : φ ∈ ψ.subformulae)
:
Formula.Kripke.Satisfies (complexityLimitedModel M r φ) ⟨r, ⋯⟩ φ ↔ Formula.Kripke.Satisfies (complexityLimitedModel M r ψ) ⟨r, ⋯⟩ φ