def
LO.Modal.Kripke.ComplexityLimitedFrame
{α : Type u_1}
(F : LO.Kripke.Frame)
(r : F.World)
(p : LO.Modal.Formula α)
:
Equations
- LO.Modal.Kripke.ComplexityLimitedFrame F r p = LO.Kripke.Frame.mk ↑{x : F.World | ∃ n ≤ p.complexity, r ≺^[n] x} fun (x y : ↑{x : F.World | ∃ n ≤ p.complexity, r ≺^[n] x}) => ↑x ≺ ↑y
Instances For
def
LO.Modal.Kripke.ComplexityLimitedModel
{α : Type u_1}
(M : LO.Kripke.Model α)
(w : M.World)
(p : LO.Modal.Formula α)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Modal.Kripke.iff_satisfy_complexity_limit_modelAux
{α : Type u_1}
[DecidableEq α]
{M : LO.Kripke.Model α}
{r : M.World}
{x : M.World}
{p : LO.Modal.Formula α}
{q : LO.Modal.Formula α}
(hq : q ∈ 𝒮 p)
(hx : ∃ n ≤ p.complexity - q.complexity, r ≺^[n] x)
:
x ⊧ q ↔ LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r p) ⟨x, ⋯⟩ q
theorem
LO.Modal.Kripke.iff_satisfy_complexity_limit_model
{α : Type u_1}
[DecidableEq α]
{M : LO.Kripke.Model α}
{r : M.World}
{p : LO.Modal.Formula α}
:
r ⊧ p ↔ LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r p) ⟨r, ⋯⟩ p
theorem
LO.Modal.Kripke.complexity_limit_model_subformula_closedAux
{α : Type u_1}
[DecidableEq α]
{M : LO.Kripke.Model α}
{r : M.World}
{p : LO.Modal.Formula α}
{q₁ : LO.Modal.Formula α}
{q₂ : LO.Modal.Formula α}
(hq₁ : p ∈ 𝒮 q₁)
(hq₂ : p ∈ 𝒮 q₂)
:
LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r q₁) ⟨r, ⋯⟩ p →
LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r q₂) ⟨r, ⋯⟩ p
theorem
LO.Modal.Kripke.complexity_limit_model_subformula_closed
{α : Type u_1}
[DecidableEq α]
{M : LO.Kripke.Model α}
{r : M.World}
{p : LO.Modal.Formula α}
{q : LO.Modal.Formula α}
(hq : p ∈ 𝒮 q)
:
LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r p) ⟨r, ⋯⟩ p ↔ LO.Modal.Formula.Kripke.Satisfies (LO.Modal.Kripke.ComplexityLimitedModel M r q) ⟨r, ⋯⟩ p