@[reducible, inline]
Instances For
- axL {α : Type u_1} {T : Theory α} (Δ : List (Formula α)) (a : α) : Derivation T (Formula.atom a :: Formula.natom a :: Δ)
- verum {α : Type u_1} {T : Theory α} (Δ : List (Formula α)) : Derivation T (⊤ :: Δ)
- or {α : Type u_1} {T : Theory α} {Δ : List (Formula α)} {φ ψ : Formula α} : Derivation T (φ :: ψ :: Δ) → Derivation T (φ ⋎ ψ :: Δ)
- and {α : Type u_1} {T : Theory α} {Δ : List (Formula α)} {φ ψ : Formula α} : Derivation T (φ :: Δ) → Derivation T (ψ :: Δ) → Derivation T (φ ⋏ ψ :: Δ)
- wk {α : Type u_1} {T : Theory α} {Δ Γ : Sequent α} : Derivation T Δ → Δ ⊆ Γ → Derivation T Γ
- cut {α : Type u_1} {T : Theory α} {Δ : List (Formula α)} {φ : Formula α} : Derivation T (φ :: Δ) → Derivation T (∼φ :: Δ) → Derivation T Δ
- root {α : Type u_1} {T : Theory α} {φ : Formula α} : φ ∈ T → Derivation T [φ]
Instances For
Equations
Equations
- LO.Propositional.Classical.Derivation.length (LO.Propositional.Classical.Derivation.axL Δ a) = 0
- LO.Propositional.Classical.Derivation.length (LO.Propositional.Classical.Derivation.verum Δ) = 0
- LO.Propositional.Classical.Derivation.length d.or = (LO.Propositional.Classical.Derivation.length d).succ
- LO.Propositional.Classical.Derivation.length (dp.and dq) = (LO.Propositional.Classical.Derivation.length dp ⊔ LO.Propositional.Classical.Derivation.length dq).succ
- LO.Propositional.Classical.Derivation.length (d.wk a) = (LO.Propositional.Classical.Derivation.length d).succ
- LO.Propositional.Classical.Derivation.length (dp.cut dn) = (LO.Propositional.Classical.Derivation.length dp ⊔ LO.Propositional.Classical.Derivation.length dn).succ
- LO.Propositional.Classical.Derivation.length (LO.Propositional.Classical.Derivation.root a) = 0
Instances For
def
LO.Propositional.Classical.Derivation.axL'
{α : Type u_1}
{T : Theory α}
{Δ : Sequent α}
(a : α)
(h : Formula.atom a ∈ Δ)
(hn : Formula.natom a ∈ Δ)
:
T ⟹ Δ
Equations
Instances For
def
LO.Propositional.Classical.Derivation.trans
{α : Type u_1}
{T U : Theory α}
(F : U ⊢* T)
{Γ : Sequent α}
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Propositional.Classical.Derivation.trans F (LO.Propositional.Classical.Derivation.axL Γ_2 φ) = LO.Propositional.Classical.Derivation.axL Γ_2 φ
- LO.Propositional.Classical.Derivation.trans F (LO.Propositional.Classical.Derivation.verum Γ_2) = LO.Propositional.Classical.Derivation.verum Γ_2
- LO.Propositional.Classical.Derivation.trans F (LO.Propositional.Classical.Derivation.root h) = F h
Instances For
instance
LO.Propositional.Classical.Derivation.instAxiomatizedFormulaTheory
{α : Type u_1}
:
Tait.Axiomatized (Formula α) (Theory α)
Equations
- One or more equations did not get rendered due to their size.
def
LO.Propositional.Classical.Derivation.compact
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{Γ : Sequent α}
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Propositional.Classical.Derivation.compact (LO.Propositional.Classical.Derivation.axL Γ_2 φ) = ⟨⟨∅, ⋯⟩, LO.Propositional.Classical.Derivation.axL Γ_2 φ⟩
- LO.Propositional.Classical.Derivation.compact (LO.Propositional.Classical.Derivation.verum Γ_2) = ⟨⟨∅, ⋯⟩, LO.Propositional.Classical.Derivation.verum Γ_2⟩
- LO.Propositional.Classical.Derivation.compact d.or = match LO.Propositional.Classical.Derivation.compact d with | ⟨s, d⟩ => ⟨s, LO.Propositional.Classical.Derivation.or d⟩
- LO.Propositional.Classical.Derivation.compact (d.wk ss) = match LO.Propositional.Classical.Derivation.compact d with | ⟨s, d⟩ => ⟨s, LO.Propositional.Classical.Derivation.wk d ss⟩
- LO.Propositional.Classical.Derivation.compact (LO.Propositional.Classical.Derivation.root h) = ⟨⟨{φ}, ⋯⟩, LO.Propositional.Classical.Derivation.root ⋯⟩
Instances For
instance
LO.Propositional.Classical.Derivation.instCompactFormulaTheory
{α : Type u_1}
[DecidableEq α]
:
System.Compact (Theory α)
Equations
- One or more equations did not get rendered due to their size.
def
LO.Propositional.Classical.Derivation.deductionAux
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{Γ : Sequent α}
{φ : Formula α}
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Propositional.Classical.Derivation.deductionAux (LO.Propositional.Classical.Derivation.axL Γ_2 φ_1) = (LO.Propositional.Classical.Derivation.axL Γ_2 φ_1).wk ⋯
- LO.Propositional.Classical.Derivation.deductionAux (LO.Propositional.Classical.Derivation.verum Γ_2) = (LO.Propositional.Classical.Derivation.verum Γ_2).wk ⋯
- LO.Propositional.Classical.Derivation.deductionAux d.or = LO.Tait.rotate₁ (LO.Tait.or (LO.Tait.wk (LO.Propositional.Classical.Derivation.deductionAux d) ⋯))
- LO.Propositional.Classical.Derivation.deductionAux (d.wk ss) = LO.Propositional.Classical.Derivation.wk (LO.Propositional.Classical.Derivation.deductionAux d) ⋯
Instances For
def
LO.Propositional.Classical.Derivation.deduction
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{Γ : Sequent α}
{φ : Formula α}
(d : insert φ T ⟹ Γ)
:
Equations
Instances For
theorem
LO.Propositional.Classical.Derivation.inconsistent_iff_provable
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{φ : Formula α}
:
System.Inconsistent (insert φ T) ↔ T ⊢! ∼φ
theorem
LO.Propositional.Classical.Derivation.consistent_iff_unprovable
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{φ : Formula α}
:
System.Consistent (insert φ T) ↔ T ⊬ ∼φ
@[simp]
theorem
LO.Propositional.Classical.Derivation.inconsistent_theory_iff
{α : Type u_1}
{T : Theory α}
:
@[simp]