instance
LO.Propositional.Classical.instSoundTheoryFormulaSetValuationModels
{α : Type u_1}
(T : Theory α)
:
Sound T (Semantics.models (Valuation α) T)
theorem
LO.Propositional.Classical.exists_maximal_consistent_theory
{α : Type u_1}
{T : Theory α}
(consisT : System.Consistent T)
:
∃ (Z : Theory α), System.Consistent Z ∧ T ⊆ Z ∧ ∀ (U : Theory α), System.Consistent U → Z ⊆ U → U = Z
noncomputable def
LO.Propositional.Classical.maximalConsistentTheory
{α : Type u_1}
{T : Theory α}
(consisT : System.Consistent T)
:
Theory α
Equations
@[simp]
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
:
System.Consistent (maximalConsistentTheory consisT)
@[simp]
theorem
LO.Propositional.Classical.subset_maximalConsistentTheory
{α : Type u_1}
{T : Theory α}
{consisT : System.Consistent T}
:
T ⊆ maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.maximalConsistentTheory_maximal
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
(U : Theory α✝)
:
System.Consistent U → maximalConsistentTheory consisT ⊆ U → U = maximalConsistentTheory consisT
@[simp]
theorem
LO.Propositional.Classical.theory_maximalConsistentTheory_eq
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
:
System.theory (maximalConsistentTheory consisT) = maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.mem_or_neg_mem_maximalConsistentTheory
{α : Type u_1}
{T : Theory α}
{consisT : System.Consistent T}
(φ : Formula α)
:
φ ∈ maximalConsistentTheory consisT ∨ ∼φ ∈ maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_iff
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
{φ : Formula α✝}
:
φ ∈ maximalConsistentTheory consisT ↔ maximalConsistentTheory consisT ⊢! φ
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent'
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
{φ : Formula α✝}
:
φ ∈ maximalConsistentTheory consisT → ∼φ ∉ maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.not_mem_maximalConsistentTheory_iff
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
{φ : Formula α✝}
:
φ ∉ maximalConsistentTheory consisT ↔ maximalConsistentTheory consisT ⊢! ∼φ
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_and
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
{φ ψ : Formula α✝}
(h : φ ⋏ ψ ∈ maximalConsistentTheory consisT)
:
φ ∈ maximalConsistentTheory consisT ∧ ψ ∈ maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_or
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
{φ ψ : Formula α✝}
(h : φ ⋎ ψ ∈ maximalConsistentTheory consisT)
:
φ ∈ maximalConsistentTheory consisT ∨ ψ ∈ maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.maximalConsistentTheory_satisfiable
{α✝ : Type u_2}
{𝓢✝ : Theory α✝}
{consisT : System.Consistent 𝓢✝}
:
{ val := fun (x : α✝) => Formula.atom x ∈ maximalConsistentTheory consisT } ⊧* maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.satisfiable_of_consistent
{α : Type u_1}
{T : Theory α}
(consisT : System.Consistent T)
:
instance
LO.Propositional.Classical.instCompleteTheoryFormulaSetValuationModels
{α : Type u_1}
(T : Theory α)
:
Complete T (Semantics.models (Valuation α) T)