theorem
LO.Propositional.Classical.Derivation.sound
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{Δ : LO.Propositional.Classical.Sequent α}
:
T ⟹ Δ → T ⊨[LO.Propositional.Classical.Valuation α] List.disj Δ
theorem
LO.Propositional.Classical.soundness
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{φ : LO.Propositional.Classical.Formula α}
:
T ⊢! φ → T ⊨[LO.Propositional.Classical.Valuation α] φ
instance
LO.Propositional.Classical.instSoundTheoryFormulaSetValuationModels
{α : Type u_1}
(T : LO.Propositional.Classical.Theory α)
:
Equations
- ⋯ = ⋯
Equations
- LO.Propositional.Classical.consistentTheory = {U : LO.Propositional.Classical.Theory α | LO.System.Consistent U}
Instances For
theorem
LO.Propositional.Classical.exists_maximal_consistent_theory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
∃ (Z : LO.Propositional.Classical.Theory α),
LO.System.Consistent Z ∧ T ⊆ Z ∧ ∀ (U : LO.Propositional.Classical.Theory α), LO.System.Consistent U → Z ⊆ U → U = Z
noncomputable def
LO.Propositional.Classical.maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
Equations
Instances For
@[simp]
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
:
@[simp]
theorem
LO.Propositional.Classical.subset_maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_maximal
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
(U : LO.Propositional.Classical.Theory α✝)
:
@[simp]
theorem
LO.Propositional.Classical.theory_maximalConsistentTheory_eq
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
:
theorem
LO.Propositional.Classical.mem_or_neg_mem_maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
(φ : LO.Propositional.Classical.Formula α)
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_iff
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
{φ : LO.Propositional.Classical.Formula α✝}
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent'
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
{φ : LO.Propositional.Classical.Formula α✝}
:
φ ∈ LO.Propositional.Classical.maximalConsistentTheory consisT →
∼φ ∉ LO.Propositional.Classical.maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.not_mem_maximalConsistentTheory_iff
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
{φ : LO.Propositional.Classical.Formula α✝}
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_and
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
{φ ψ : LO.Propositional.Classical.Formula α✝}
(h : φ ⋏ ψ ∈ LO.Propositional.Classical.maximalConsistentTheory consisT)
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_or
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
{φ ψ : LO.Propositional.Classical.Formula α✝}
(h : φ ⋎ ψ ∈ LO.Propositional.Classical.maximalConsistentTheory consisT)
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_satisfiable
{α✝ : Type u_2}
{𝓢✝ : LO.Propositional.Classical.Theory α✝}
{consisT : LO.System.Consistent 𝓢✝}
:
{
val := fun (x : α✝) =>
LO.Propositional.Classical.Formula.atom x ∈ LO.Propositional.Classical.maximalConsistentTheory consisT } ⊧* LO.Propositional.Classical.maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.satisfiable_of_consistent
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
theorem
LO.Propositional.Classical.completeness!
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{φ : LO.Propositional.Classical.Formula α}
:
T ⊨[LO.Propositional.Classical.Valuation α] φ → T ⊢! φ
noncomputable def
LO.Propositional.Classical.completeness
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{φ : LO.Propositional.Classical.Formula α}
:
T ⊨[LO.Propositional.Classical.Valuation α] φ → T ⊢ φ
Equations
Instances For
instance
LO.Propositional.Classical.instCompleteTheoryFormulaSetValuationModels
{α : Type u_1}
(T : LO.Propositional.Classical.Theory α)
:
Equations
- ⋯ = ⋯