Documentation

Foundation.Propositional.Classical.Basic.Completeness

theorem LO.Propositional.Classical.Derivation.sound {α : Type u_1} {T : Theory α} {Δ : Sequent α} :
T ΔT ⊨[Valuation α] List.disj Δ
theorem LO.Propositional.Classical.soundness {α : Type u_1} {T : Theory α} {φ : Formula α} :
T ⊢! φT ⊨[Valuation α] φ
theorem LO.Propositional.Classical.exists_maximal_consistent_theory {α : Type u_1} {T : Theory α} (consisT : System.Consistent T) :
∃ (Z : Theory α), System.Consistent Z T Z ∀ (U : Theory α), System.Consistent UZ UU = Z
theorem LO.Propositional.Classical.maximalConsistentTheory_maximal {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} (U : Theory α✝) :
theorem LO.Propositional.Classical.mem_maximalConsistentTheory_iff {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} {φ : Formula α✝} :
theorem LO.Propositional.Classical.maximalConsistentTheory_consistent' {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} {φ : Formula α✝} :
theorem LO.Propositional.Classical.not_mem_maximalConsistentTheory_iff {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} {φ : Formula α✝} :
theorem LO.Propositional.Classical.mem_maximalConsistentTheory_and {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} {φ ψ : Formula α✝} (h : φ ψ maximalConsistentTheory consisT) :
theorem LO.Propositional.Classical.mem_maximalConsistentTheory_or {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} {φ ψ : Formula α✝} (h : φ ψ maximalConsistentTheory consisT) :
theorem LO.Propositional.Classical.maximalConsistentTheory_satisfiable {α✝ : Type u_2} {𝓢✝ : Theory α✝} {consisT : System.Consistent 𝓢✝} :
{ val := fun (x : α✝) => Formula.atom x maximalConsistentTheory consisT } ⊧* maximalConsistentTheory consisT
theorem LO.Propositional.Classical.completeness! {α : Type u_1} {T : Theory α} {φ : Formula α} :
T ⊨[Valuation α] φT ⊢! φ
noncomputable def LO.Propositional.Classical.completeness {α : Type u_1} {T : Theory α} {φ : Formula α} :
T ⊨[Valuation α] φT φ
Equations