theorem
LO.Propositional.Classical.Derivation.sound
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{Δ : LO.Propositional.Classical.Sequent α}
:
T ⟹ Δ → T ⊨[LO.Propositional.Classical.Valuation α] List.disj Δ
theorem
LO.Propositional.Classical.soundness
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{p : LO.Propositional.Classical.Formula α}
:
T ⊢! p → T ⊨[LO.Propositional.Classical.Valuation α] p
instance
LO.Propositional.Classical.instSoundTheoryFormulaSetValuationModels
{α : Type u_1}
(T : LO.Propositional.Classical.Theory α)
:
Equations
- ⋯ = ⋯
Equations
- LO.Propositional.Classical.consistentTheory = {U : LO.Propositional.Classical.Theory α | LO.System.Consistent U}
Instances For
theorem
LO.Propositional.Classical.exists_maximal_consistent_theory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
∃ (Z : LO.Propositional.Classical.Theory α),
LO.System.Consistent Z ∧ T ⊆ Z ∧ ∀ (U : LO.Propositional.Classical.Theory α), LO.System.Consistent U → Z ⊆ U → U = Z
noncomputable def
LO.Propositional.Classical.maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
Equations
Instances For
@[simp]
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
:
@[simp]
theorem
LO.Propositional.Classical.subset_maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_maximal
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
(U : LO.Propositional.Classical.Theory α)
:
@[simp]
theorem
LO.Propositional.Classical.theory_maximalConsistentTheory_eq
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
:
theorem
LO.Propositional.Classical.mem_or_neg_mem_maximalConsistentTheory
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
(p : LO.Propositional.Classical.Formula α)
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_iff
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
{p : LO.Propositional.Classical.Formula α}
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_consistent'
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
{p : LO.Propositional.Classical.Formula α}
:
p ∈ LO.Propositional.Classical.maximalConsistentTheory consisT →
∼p ∉ LO.Propositional.Classical.maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.not_mem_maximalConsistentTheory_iff
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
{p : LO.Propositional.Classical.Formula α}
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_and
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
{p : LO.Propositional.Classical.Formula α}
{q : LO.Propositional.Classical.Formula α}
(h : p ⋏ q ∈ LO.Propositional.Classical.maximalConsistentTheory consisT)
:
theorem
LO.Propositional.Classical.mem_maximalConsistentTheory_or
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
{p : LO.Propositional.Classical.Formula α}
{q : LO.Propositional.Classical.Formula α}
(h : p ⋎ q ∈ LO.Propositional.Classical.maximalConsistentTheory consisT)
:
theorem
LO.Propositional.Classical.maximalConsistentTheory_satisfiable
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{consisT : LO.System.Consistent T}
:
{
val := fun (x : α) =>
LO.Propositional.Classical.Formula.atom x ∈ LO.Propositional.Classical.maximalConsistentTheory consisT } ⊧* LO.Propositional.Classical.maximalConsistentTheory consisT
theorem
LO.Propositional.Classical.satisfiable_of_consistent
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
(consisT : LO.System.Consistent T)
:
theorem
LO.Propositional.Classical.completeness!
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{p : LO.Propositional.Classical.Formula α}
:
T ⊨[LO.Propositional.Classical.Valuation α] p → T ⊢! p
noncomputable def
LO.Propositional.Classical.completeness
{α : Type u_1}
{T : LO.Propositional.Classical.Theory α}
{p : LO.Propositional.Classical.Formula α}
:
T ⊨[LO.Propositional.Classical.Valuation α] p → T ⊢ p
Equations
Instances For
instance
LO.Propositional.Classical.instCompleteTheoryFormulaSetValuationModels
{α : Type u_1}
(T : LO.Propositional.Classical.Theory α)
:
Equations
- ⋯ = ⋯